Efficient algorithms <https://jmlr.org/papers/v24/21-0751.html> for computing Area Under Minimum, directional derivatives, and line search optimization of a linear model, with objective defined as either max Area Under the Curve or min Area Under Minimum.
The Confidence Bound Target (CBT) algorithm is designed for infinite arms bandit problem. It is shown that CBT algorithm achieves the regret lower bound for general reward distributions. Reference: Hock Peng Chan and Shouri Hu (2018) <arXiv:1805.11793>
.
This package provides functions for estimating EMP (Expected Maximum Profit Measure) in Credit Risk Scoring and Customer Churn Prediction, according to Verbraken et al (2013, 2014) <DOI:10.1109/TKDE.2012.50>, <DOI:10.1016/j.ejor.2014.04.001>.
Multivariate conditional and marginal densities, moments, cumulative distribution functions as well as binary choice and sample selection models based on Hermite polynomial approximation which was proposed and described by A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>.
Allows distance based spatial clustering of georeferenced data by implementing the City Clustering Algorithm - CCA. Multiple versions allow clustering for a matrix, raster and single coordinates on a plain (Euclidean distance) or on a sphere (great-circle or orthodromic distance).
Updated versions of the 1970's "US State Facts and Figures" objects from the datasets package included with R. The new data is compiled from a number of sources, primarily from United States Census Bureau or the relevant federal agency.
The Router Advertisement Daemon (radvd) is run on systems acting as IPv6 routers. It sends Router Advertisement messages specified by RFC 2461 periodically and when requested by a node sending a Router Solicitation message. These messages are required for IPv6 stateless autoconfiguration.
This package contains a set of functions that extend the cancor
function. These functions provide new numerical and graphical outputs. It also includes a regularized extension of the canonical correlation analysis to deal with datasets with more variables than observations.
This package provides various methods for clustering and cluster validation. For example, it provides fixed point clustering, linear regression clustering, clustering by merging Gaussian mixture components, as well as symmetric and asymmetric discriminant projections for visualisation of the separation of groupings.
This package provides functions, data sets, examples, demos, and vignettes for the book Christian Kleiber and Achim Zeileis (2008), Applied Econometrics with R, Springer-Verlag, New York. ISBN 978-0-387-77316-2. (See the vignette "AER" for a package overview.)
For ordinal rating data, estimate and test models within the family of CUB models and their extensions (where CUB stands for Combination of a discrete Uniform and a shifted Binomial distributions); Simulation routines, plotting facilities and fitting measures are also provided.
The philosophy in the package is described in Stasny (1988) <doi:10.2307/1391558> and Gutierrez, A., Trujillo, L. & Silva, N. (2014), <ISSN:1492-0921> to estimate the gross flows under complex surveys using a Markov chain approach with non response.
For estimation of a variable of interest using two sources of auxiliary information available in a nested structure. For reference see Saarela et al. (2016)<doi:10.1007/s13595-016-0590-1> and Saarela et al. (2018) <doi:10.3390/rs10111832>.
Assist in the estimation of the Intraclass Correlation Coefficient (ICC) from variance components of a one-way analysis of variance and also estimate the number of individuals or groups necessary to obtain an ICC estimate with a desired confidence interval width.
Calculate B-spline basis functions with a given set of knots and order, or a B-spline function with a given set of knots and order and set of de Boor points (coefficients), or the integral of a B-spline function.
This package creates modules inline or from a file. Modules can contain any R object and be nested. Each module have their own scope and package "search path" that does not interfere with one another or the user's working environment.
Estimate the positron emission tomography (PET) neuroreceptor occupancies from the total volumes of distribution of a set of regions of interest. Fitting methods include the simple reference region', ordinary least squares (sometimes known as occupancy plot), and restricted maximum likelihood estimation'.
This package implements the Bayesian online changepoint detection method by Adams and MacKay
(2007) <arXiv:0710.3742>
for univariate or multivariate data. Gaussian and Poisson probability models are implemented. Provides post-processing functions with alternative ways to extract changepoints.
Fitting and testing probabilistic knowledge structures, especially the basic local independence model (BLIM, Doignon & Flamagne, 1999) and the simple learning model (SLM), using the minimum discrepancy maximum likelihood (MDML) method (Heller & Wickelmaier, 2013 <doi:10.1016/j.endm.2013.05.145>).
This package provides permutation methods for testing in high-dimensional linear models. The tests are often robust against heteroscedasticity and non-normality and usually perform well under anti-sparsity. See Hemerik, Thoresen and Finos (2021) <doi:10.1080/00949655.2020.1836183>.
Given k populations (can be in thousands), what is the probability that a given subset of size t contains the true top t populations? This package finds this probability and offers three tuning parameters (G, d, L) to relax the definition.
This package provides monthly statistics on the number of monthly air passengers at SFO airport such as operating airline, terminal, geo, etc. Data source: San Francisco data portal (DataSF
) <https://data.sfgov.org/Transportation/Air-Traffic-Passenger-Statistics/rkru-6vcg>.
This package implements several Approximate Bayesian Computation (ABC) algorithms for performing parameter estimation, model selection, and goodness-of-fit. Cross-validation tools are also available for measuring the accuracy of ABC estimates, and to calculate the misclassification probabilities of different models.
This package provides a modified implementation of stepwise regression that greedily searches the space of interactions among features in order to build polynomial regression models. Furthermore, the hypothesis tests conducted are valid-post model selection due to the use of a revisiting procedure that implements an alpha-investing rule. As a result, the set of rejected sequential hypotheses is proven to control the marginal false discover rate. When not searching for polynomials, the package provides a statistically valid algorithm to run and terminate stepwise regression. For more information, see Johnson, Stine, and Foster (2019) <arXiv:1510.06322>
.