Statistical estimation of revealed preference models from data collected on bipartite matchings. The models are for matchings within a bipartite population where individuals have utility for people based on known and unknown characteristics. People can form a partnership or remain unpartnered. The model represents both the availability of potential partners of different types and preferences of individuals for such people. The software estimates preference parameters based on sample survey data on partnerships and population composition. The simulation of matchings and goodness-of-fit are considered. See Goyal, Handcock, Jackson, Rendall and Yeung (2022) <doi:10.1093/jrsssa/qnad031>.
Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) <doi:10.1214/19-BA1195> for additional information. This implementation relies on code originally accompanying Pratola et. al. (2013) <arXiv:1309.1906>
.
An algorithm of optimal subset selection, related to Covariance matrices, observation matrices and Response vectors (COR) to select the optimal subsets in distributed estimation. The philosophy of the package is described in Guo G. (2024) <doi:10.1007/s11222-024-10471-z>.
Facilitates the aggregation of species geographic ranges from vector or raster spatial data, and that enables the calculation of various morphological and phylogenetic community metrics across geography. Citation: Title, PO, DL Swiderski and ML Zelditch (2022) <doi:10.1111/2041-210X.13914>.
This package provides functions for the estimation, plotting, predicting and cross-validation of hierarchical feature regression models as described in Pfitzinger (2024). Cluster Regularization via a Hierarchical Feature Regression. Econometrics and Statistics (in press). <doi:10.1016/j.ecosta.2024.01.003>.
Drawing statistical inference on the coefficients of a short- or long-horizon predictive regression with persistent regressors by using the IVX method of Magdalinos and Phillips (2009) <doi:10.1017/S0266466608090154> and Kostakis, Magdalinos and Stamatogiannis (2015) <doi:10.1093/rfs/hhu139>.
We use the ISR to handle with PCA-based missing data with high correlation, and the DISR to handle with distributed PCA-based missing data. The philosophy of the package is described in Guo G. (2024) <doi:10.1080/03610918.2022.2091779>.
It implements Expectation/Conditional Maximization Either (ECME) and rapidly converging algorithms as well as Bayesian inference for linear mixed models, which is described in Schafer, J.L. (1998) "Some improved procedures for linear mixed models". Dept. of Statistics, The Pennsylvania State University.
The LIC criterion is to determine the most informative subsets so that the subset can retain most of the information contained in the complete data. The philosophy of the package is described in Guo G. (2022) <doi:10.1080/02664763.2022.2053949>.
Generating and validating One-time Password based on Hash-based Message Authentication Code (HOTP) and Time Based One-time Password (TOTP) according to RFC 4226 <https://datatracker.ietf.org/doc/html/rfc4226> and RFC 6238 <https://datatracker.ietf.org/doc/html/rfc6238>.
Fit a probabilistic index model as described in Thas et al, 2012: <doi:10.1111/j.1467-9868.2011.01020.x>. The interface to the modeling function has changed in this new version. The old version is still available at R-Forge.
Computes a simple blinding index for randomized controlled trials introduced in Petroff, Bacak, Dagres, Dilk, Wachter: A simple blinding index for randomized controlled trials. Contemp Clin Trials Commun. 2024 Nov 26;42:101393. <doi:10.1016/j.conctc.2024.101393>. PMID: 39686958.
Extrema-weighted feature extraction for varying length functional data. Functional data analysis method that performs dimensionality reduction based on predefined features and allows for quantile weighting. Method implemented as presented in van den Boom et al. (2018) <doi:10.1093/bioinformatics/bty120>.
This package provides tools to render DOT diagram markup language in R and also provides the possibility to export the graphs in PostScript and SVG (Scalable Vector Graphics) formats. In addition, it supports literate programming packages such as knitr
and rmarkdown
.
Manage and analyze animal movement data. The functionality of amt includes methods to calculate home ranges, track statistics (e.g. step lengths, speed, or turning angles), prepare data for fitting habitat selection analyses, and simulation of space-use from fitted step-selection functions.
This package contains tools to fit both predictive and prognostic biomarker effects using biomarker threshold models and continuous threshold models. Evaluate the treatment effect, biomarker effect and treatment-biomarker interaction using probability index measurement. Test for treatment-biomarker interaction using residual bootstrap method.
Posterior sampling and inference for Bayesian Poisson regression models. The model specification makes use of Gaussian (or conditionally Gaussian) prior distributions on the regression coefficients. Details on the algorithm are found in D'Angelo and Canale (2023) <doi:10.1080/10618600.2022.2123337>.
This package implements a backward procedure for single and multiple change point detection proposed by Shin et al. <arXiv:1812.10107>
. The backward approach is particularly useful to detect short and sparse signals which is common in copy number variation (CNV) detection.
Isotonic regression (IR) and its improvement: centered isotonic regression (CIR). CIR is recommended in particular with small samples. Also, interval estimates for both, and additional utilities such as plotting dose-response data. For dev version and change history, see GitHub
assaforon/cir.
Classification method described in Dancik et al (2011) <doi:10.1158/0008-5472.CAN-11-2427> that classifies a sample according to the class with the maximum mean (or any other function of) correlation between the test and training samples with known classes.
Implementation of the Coarsened Exact Matching algorithm discussed along with its properties in Iacus, King, Porro (2011) <DOI:10.1198/jasa.2011.tm09599>; Iacus, King, Porro (2012) <DOI:10.1093/pan/mpr013> and Iacus, King, Porro (2019) <DOI:10.1017/pan.2018.29>.
Goodness-of-fit tests for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. Monte Carlo methods are provided to make the package capable of solving high-dimensional problems.
This package provides a suite of common statistical methods such as descriptives, t-tests, ANOVAs, regression, correlation matrices, proportion tests, contingency tables, and factor analysis. This package is also useable from the jamovi statistical spreadsheet (see <https://www.jamovi.org> for more information).
This package provides a system to help you organize projects. Most analyses have three (or more) main sections: code, results, and data, each with different requirements (version control/sharing/encryption). You provide folder locations and org helps you take care of the details.