R-tgb provides Bayesian nonstationary regression and treed Gaussian processes. In addition, it provides visualization functions, tree drawing, sensitivity analysis, multi-resolution models, and sequential experimental design tools, including ALM, ALC, and expected improvement for optimizing noisy black-box functions.
This package provides methods for comparing different regression algorithms for describing the temporal dynamics of secondary tree growth (xylem and phloem). Users can compare the accuracy of the most common fitting methods usually used to analyse xylem and phloem data, i.e., Gompertz function, Double Gompertz function, General Additive Models (GAMs); and an algorithm newly introduced to the field, i.e., Bayesian Regularised Neural Networks (brnn). The core function of the package is XPSgrowth()
, while the results can be interpreted using implemented generic S3 methods, such as plot()
and summary()
.
This package implements the RUV (Remove Unwanted Variation) algorithms. These algorithms attempt to adjust for systematic errors of unknown origin in high-dimensional data. The algorithms were originally developed for use with genomic data, especially microarray data, but may be useful with other types of high-dimensional data as well. The algorithms require the user to specify a set of negative control variables, as described in the references. The algorithms included in this package are RUV-2, RUV-4, RUV-inv, RUV-rinv, RUV-I, and RUV-III, along with various supporting algorithms.
For ordinal rating data, estimate and test models within the family of CUB models and their extensions (where CUB stands for Combination of a discrete Uniform and a shifted Binomial distributions); Simulation routines, plotting facilities and fitting measures are also provided.
The philosophy in the package is described in Stasny (1988) <doi:10.2307/1391558> and Gutierrez, A., Trujillo, L. & Silva, N. (2014), <ISSN:1492-0921> to estimate the gross flows under complex surveys using a Markov chain approach with non response.
For estimation of a variable of interest using two sources of auxiliary information available in a nested structure. For reference see Saarela et al. (2016)<doi:10.1007/s13595-016-0590-1> and Saarela et al. (2018) <doi:10.3390/rs10111832>.
Assist in the estimation of the Intraclass Correlation Coefficient (ICC) from variance components of a one-way analysis of variance and also estimate the number of individuals or groups necessary to obtain an ICC estimate with a desired confidence interval width.
Calculate B-spline basis functions with a given set of knots and order, or a B-spline function with a given set of knots and order and set of de Boor points (coefficients), or the integral of a B-spline function.
This package creates modules inline or from a file. Modules can contain any R object and be nested. Each module have their own scope and package "search path" that does not interfere with one another or the user's working environment.
This package implements the Bayesian online changepoint detection method by Adams and MacKay
(2007) <arXiv:0710.3742>
for univariate or multivariate data. Gaussian and Poisson probability models are implemented. Provides post-processing functions with alternative ways to extract changepoints.
Estimate the positron emission tomography (PET) neuroreceptor occupancies from the total volumes of distribution of a set of regions of interest. Fitting methods include the simple reference region', ordinary least squares (sometimes known as occupancy plot), and restricted maximum likelihood estimation'.
Given k populations (can be in thousands), what is the probability that a given subset of size t contains the true top t populations? This package finds this probability and offers three tuning parameters (G, d, L) to relax the definition.
This package provides permutation methods for testing in high-dimensional linear models. The tests are often robust against heteroscedasticity and non-normality and usually perform well under anti-sparsity. See Hemerik, Thoresen and Finos (2021) <doi:10.1080/00949655.2020.1836183>.
Fitting and testing probabilistic knowledge structures, especially the basic local independence model (BLIM, Doignon & Flamagne, 1999) and the simple learning model (SLM), using the minimum discrepancy maximum likelihood (MDML) method (Heller & Wickelmaier, 2013 <doi:10.1016/j.endm.2013.05.145>).
This package provides monthly statistics on the number of monthly air passengers at SFO airport such as operating airline, terminal, geo, etc. Data source: San Francisco data portal (DataSF
) <https://data.sfgov.org/Transportation/Air-Traffic-Passenger-Statistics/rkru-6vcg>.
The Router Advertisement Daemon (radvd) is run on systems acting as IPv6 routers. It sends Router Advertisement messages specified by RFC 2461 periodically and when requested by a node sending a Router Solicitation message. These messages are required for IPv6 stateless autoconfiguration.
This package provides functions, data sets, examples, demos, and vignettes for the book Christian Kleiber and Achim Zeileis (2008), Applied Econometrics with R, Springer-Verlag, New York. ISBN 978-0-387-77316-2. (See the vignette "AER" for a package overview.)
This package contains a set of functions that extend the cancor
function. These functions provide new numerical and graphical outputs. It also includes a regularized extension of the canonical correlation analysis to deal with datasets with more variables than observations.
This package provides various methods for clustering and cluster validation. For example, it provides fixed point clustering, linear regression clustering, clustering by merging Gaussian mixture components, as well as symmetric and asymmetric discriminant projections for visualisation of the separation of groupings.
Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) <doi:10.1214/19-BA1195> for additional information. This implementation relies on code originally accompanying Pratola et. al. (2013) <arXiv:1309.1906>
.
An algorithm of optimal subset selection, related to Covariance matrices, observation matrices and Response vectors (COR) to select the optimal subsets in distributed estimation. The philosophy of the package is described in Guo G. (2024) <doi:10.1007/s11222-024-10471-z>.
Facilitates the aggregation of species geographic ranges from vector or raster spatial data, and that enables the calculation of various morphological and phylogenetic community metrics across geography. Citation: Title, PO, DL Swiderski and ML Zelditch (2022) <doi:10.1111/2041-210X.13914>.
This package provides functions for the estimation, plotting, predicting and cross-validation of hierarchical feature regression models as described in Pfitzinger (2024). Cluster Regularization via a Hierarchical Feature Regression. Econometrics and Statistics (in press). <doi:10.1016/j.ecosta.2024.01.003>.
We use the ISR to handle with PCA-based missing data with high correlation, and the DISR to handle with distributed PCA-based missing data. The philosophy of the package is described in Guo G. (2024) <doi:10.1080/03610918.2022.2091779>.