Supports calculations and visualization for renewable power systems and the environment. Analysis and graphical tools for DC and AC circuits and their use in electric power systems. Analysis and graphical tools for thermodynamic cycles and heat engines, supporting efficiency calculations in coal-fired power plants, gas-fired power plants. Calculations of carbon emissions and atmospheric CO2 dynamics. Analysis of power flow and demand for the grid, as well as power models for microgrids and off-grid systems. Provides resource and power generation for hydro power, wind power, and solar power.
This package estimates the matrix of partial correlations based on different regularized regression methods: lasso, adaptive lasso, PLS, and Ridge Regression. In addition, the package provides model selection for lasso, adaptive lasso and Ridge regression based on cross-validation.
This package allows clinicians to predict the rate and severity of future acute exacerbation in Chronic Obstructive Pulmonary Disease (COPD) patients, based on the clinical prediction model published in Adibi et al. (2019) doi:10.1101/651901.
Estimate quantile regression (QR) and composite quantile regression (cqr) and with adaptive lasso penalty using interior point (IP), majorize and minimize (MM), coordinate descent (CD), and alternating direction method of multipliers algorithms (ADMM).
This is a package for curve, surface and function fitting with an emphasis on splines, spatial data and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets.
Extract metadata from NetCDF data sources; these can be files, file handles or servers. This package leverages and extends the lower level functions of the RNetCDF package providing a consistent set of functions that all return data frames.
The main aim of the pander R package is to provide a minimal and easy tool for rendering R objects into Pandoc's markdown. The package is also capable of exporting/converting complex Pandoc documents (reports) in various ways.
The Bandle package enables the analysis and visualisation of differential localisation experiments using mass-spectrometry data. Experimental methods supported include dynamic LOPIT-DC, hyperLOPIT, Dynamic Organellar Maps, Dynamic PCP. It provides Bioconductor infrastructure to analyse these data.
This package contains functions implementing various tasks usually required by gene expression analysis, especially in breast cancer studies: gene mapping between different microarray platforms, identification of molecular subtypes, implementation of published gene signatures, gene selection, and survival analysis.
This package provides ISoLDE a new method for identifying imprinted genes. This method is dedicated to data arising from RNA sequencing technologies. The ISoLDE package implements original statistical methodology described in the publication below.
Provide tools exploring miRNA-mRNA relationships, including popular miRNA target prediction methods, ensemble methods that integrate individual methods, functions to get data from online resources, functions to validate the results, and functions to conduct enrichment analyses.
MyGene.Info_ provides simple-to-use REST web services to query/retrieve gene annotation data. It's designed with simplicity and performance emphasized. *mygene*, is an easy-to-use R wrapper to access MyGene.Info_ services.
Microbiome time series simulation with generalized Lotka-Volterra model, Self-Organized Instability (SOI), and other models. Hubbell's Neutral model is used to determine the abundance matrix. The resulting abundance matrix is applied to (Tree)SummarizedExperiment objects.
Omixer - an Bioconductor package for multivariate and reproducible sample randomization, which ensures optimal sample distribution across batches with well-documented methods. It outputs lab-friendly sample layouts, reducing the risk of sample mixups when manually pipetting randomized samples.
Estimation of one- and two-sided confidence intervals via the numerical inversion of the cumulative distribution function of a statistic's sampling distribution. For more details, see section 9.2.3 of Casella and Berger (2002) <ISBN:0534243126>.
Encrypts and decrypts using basic ciphers. None of these should be used in place of real encryption using state of the art tools. The ciphers included use methods described in the ciphers's Wikipedia and cryptography hobby websites.
An R implementation of the algorithms described in Reingold and Dershowitz (4th ed., Cambridge University Press, 2018) <doi:10.1017/9781107415058>, allowing conversion between many different calendar systems. Cultural and religious holidays from several calendars can be calculated.
Detect abrupt changes in time series with local fluctuations as a random walk process and autocorrelated noise as an AR(1) process. See Romano, G., Rigaill, G., Runge, V., Fearnhead, P. (2021) <doi:10.1080/01621459.2021.1909598>.
The load estimation method is based on a general factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>.
This package provides a set of functions for securely storing API tokens and interacting with the <https://diariodeobras.net> system. Includes convenient wrappers around the httr2 package to perform authenticated requests, retrieve project details, tasks, reports, and more.
Detection of differential item functioning (DIF) among dichotomously scored items and differential distractor functioning (DDF) among unscored items with non-linear regression procedures based on generalized logistic regression models (Hladka & Martinkova, 2020, <doi:10.32614/RJ-2020-014>).
This package provides a rich toolkit of using the whole building simulation program EnergyPlus'(<https://energyplus.net>), which enables programmatic navigation, modification of EnergyPlus models and makes it less painful to do parametric simulations and analysis.
This package provides a flexible interface to the Financial Modeling Prep API <https://site.financialmodelingprep.com/developer/docs>. The package supports all available endpoints and parameters, enabling R users to interact with a wide range of financial data.
Genealogical data analysis including descriptive statistics (e.g., kinship and inbreeding coefficients) and gene-dropping simulations. See: "GENLIB: an R package for the analysis of genealogical data" Gauvin et al. (2015) <doi:10.1186/s12859-015-0581-5>.