The Bandle package enables the analysis and visualisation of differential localisation experiments using mass-spectrometry data. Experimental methods supported include dynamic LOPIT-DC, hyperLOPIT, Dynamic Organellar Maps, Dynamic PCP. It provides Bioconductor infrastructure to analyse these data.
This package contains functions implementing various tasks usually required by gene expression analysis, especially in breast cancer studies: gene mapping between different microarray platforms, identification of molecular subtypes, implementation of published gene signatures, gene selection, and survival analysis.
This package provides ISoLDE a new method for identifying imprinted genes. This method is dedicated to data arising from RNA sequencing technologies. The ISoLDE package implements original statistical methodology described in the publication below.
Provide tools exploring miRNA-mRNA relationships, including popular miRNA target prediction methods, ensemble methods that integrate individual methods, functions to get data from online resources, functions to validate the results, and functions to conduct enrichment analyses.
MyGene.Info_ provides simple-to-use REST web services to query/retrieve gene annotation data. It's designed with simplicity and performance emphasized. *mygene*, is an easy-to-use R wrapper to access MyGene.Info_ services.
Microbiome time series simulation with generalized Lotka-Volterra model, Self-Organized Instability (SOI), and other models. Hubbell's Neutral model is used to determine the abundance matrix. The resulting abundance matrix is applied to (Tree)SummarizedExperiment objects.
Omixer - an Bioconductor package for multivariate and reproducible sample randomization, which ensures optimal sample distribution across batches with well-documented methods. It outputs lab-friendly sample layouts, reducing the risk of sample mixups when manually pipetting randomized samples.
The main aim of the pander R package is to provide a minimal and easy tool for rendering R objects into Pandoc's markdown. The package is also capable of exporting/converting complex Pandoc documents (reports) in various ways.
Estimate quantile regression (QR) and composite quantile regression (cqr) and with adaptive lasso penalty using interior point (IP), majorize and minimize (MM), coordinate descent (CD), and alternating direction method of multipliers algorithms (ADMM).
Extract metadata from NetCDF data sources; these can be files, file handles or servers. This package leverages and extends the lower level functions of the RNetCDF package providing a consistent set of functions that all return data frames.
This is a package for curve, surface and function fitting with an emphasis on splines, spatial data and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets.
This package allows clinicians to predict the rate and severity of future acute exacerbation in Chronic Obstructive Pulmonary Disease (COPD) patients, based on the clinical prediction model published in Adibi et al. (2019) doi:10.1101/651901.
This package estimates the matrix of partial correlations based on different regularized regression methods: lasso, adaptive lasso, PLS, and Ridge Regression. In addition, the package provides model selection for lasso, adaptive lasso and Ridge regression based on cross-validation.
STK++ <http://www.stkpp.org> is a collection of C++ classes for statistics, clustering, linear algebra, arrays (with an Eigen'-like API), regression, dimension reduction, etc. The integration of the library to R is using Rcpp'. The rtkore package includes the header files from the STK++ core library. All files contain only template classes and/or inline functions. STK++ is licensed under the GNU LGPL version 2 or later. rtkore (the stkpp integration into R') is licensed under the GNU GPL version 2 or later. See file LICENSE.note for details.
RepViz enables the view of a genomic region in a simple and efficient way. RepViz allows simultaneous viewing of both intra- and intergroup variation in sequencing counts of the studied conditions, as well as their comparison to the output features (e.g. identified peaks) from user selected data analysis methods.The RepViz tool is primarily designed for chromatin data such as ChIP-seq and ATAC-seq, but can also be used with other sequencing data such as RNA-seq, or combinations of different types of genomic data.
This package provides functions to fit the binomial and multinomial additive hazard models and to estimate the contribution of diseases/conditions to the disability prevalence, as proposed by Nusselder and Looman (2004) and extended by Yokota et al (2017).
Easy-to-use tools for performing complex queries on avidaDB', a semantic database that stores genomic and transcriptomic data of self-replicating computer programs (known as digital organisms) that mutate and evolve within a user-defined computational environment.
Fits from simple regression to highly customizable deep neural networks either with gradient descent or metaheuristic, using automatic hyper parameters tuning and custom cost function. A mix inspired by the common tricks on Deep Learning and Particle Swarm Optimization.
This package provides a lossless compressed data format that uses a combination of the LZ77 algorithm and Huffman coding <https://www.rfc-editor.org/rfc/rfc7932>. Brotli is similar in speed to deflate (gzip) but offers more dense compression.
Bayesian models for accurately estimating conditional distributions by race, using Bayesian Improved Surname Geocoding (BISG) probability estimates of individual race. Implements the methods described in McCartan, Fisher, Goldin, Ho and Imai (2025) <doi:10.1080/01621459.2025.2526695>.
Implementation of the d/p/q/r family of functions for a continuous analog to the standard discrete binomial with continuous size parameter and continuous support with x in [0, size + 1], following Ilienko (2013) <arXiv:1303.5990>.
This package provides functions that format statistical output in a way that can be inserted into R Markdown documents. This is analogous to the apa_print() functions in the papaja package but prints Markdown or LaTeX syntax.
Dynamic stochastic block model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time, developed in Matias and Miele (2016) <doi:10.1111/rssb.12200>.
Model cell type heterogeneity of bulk renal cell carcinoma. The observed gene expression in bulk tumor sample is modeled by a log-normal distribution with the location parameter structured as a linear combination of the component-specific gene expressions.