Computes power, or sample size or the detectable difference for a repeated measures model with attrition. It requires the variance covariance matrix of the observations but can compute this matrix for several common random effects models. See Diggle, P, Liang, KY and Zeger, SL (1994, ISBN:9780198522843).
This package provides a client for interacting with magma', the data warehouse of the UCSF Data Library'. magmaR
includes functions for querying and downloading data from magma', in order to enable working with such data in R, as well as for uploading local data to magma'.
Multivariate Surrogate Synchrony ('mvSUSY
') estimates the synchrony within datasets that contain more than two time series. mvSUSY
was developed from Surrogate Synchrony ('SUSY') with respect to implementing surrogate controls, and extends synchrony estimation to multivariate data. mvSUSY
works as described in Meier & Tschacher (2021).
Fit generalized linear models with binomial responses using a median modified score approach (Kenne Pagui et al., 2016, <https://arxiv.org/abs/1604.04768>) to median bias reduction. This method respects equivariance under reparameterizations for each parameter component and also solves the infinite estimates problem (data separation).
This package provides an interface with the Meteo France Synop data API (see <https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32> for more information). The Meteo France Synop data are made of meteorological data recorded every three hours on 62 French meteorological stations.
Given a set of source zone polygons such as census tracts or city blocks alongside with population counts and a target zone of incogruent yet superimposed polygon features (such as individual buildings) populR
transforms population counts from the former to the latter using Areal Interpolation methods.
Anomaly detection method based on the paper "Truth will out: Departure-based process-level detection of stealthy attacks on control systems" from Wissam Aoudi, Mikel Iturbe, and Magnus Almgren (2018) <DOI:10.1145/3243734.3243781>. Also referred to the following implementation: <https://github.com/rahulrajpl/PyPASAD>
.
This package provides a powerful, easy to use syntax for specifying and estimating complex Structural Equation Models. Models can be estimated using Partial Least Squares Path Modeling or Covariance-Based Structural Equation Modeling or covariance based Confirmatory Factor Analysis. Methods described in Ray, Danks, and Valdez (2021).
SOHPIE (pronounced as SOFIE) is a novel pseudo-value regression approach for differential co-abundance network analysis of microbiome data, which can include additional clinical covariate in the model. The full methodological details can be found in Ahn S and Datta S (2023) <arXiv:2303.13702v1>
.
Implementation of the original Sequence Globally Unique Identifier (SEGUID) algorithm [Babnigg and Giometti (2006) <doi:10.1002/pmic.200600032>] and SEGUID v2 (<https://www.seguid.org>), which extends SEGUID v1 with support for linear, circular, single- and double-stranded biological sequences, e.g. DNA, RNA, and proteins.
Algorithms of nonparametric sequential test and online change-point detection for streams of univariate (sub-)Gaussian, binary, and bounded random variables, introduced in following publications - Shin et al. (2024) <doi:10.48550/arXiv.2203.03532>
, Shin et al. (2021) <doi:10.48550/arXiv.2010.08082>
.
Human Phenotype Ontology (HPO) was developed to create a consistent description of gene products with disease perspectives, and is essential for supporting functional genomics in disease context. Accurate disease descriptions can discover new relationships between genes and disease, and new functions for previous uncharacteried genes and alleles.
This package is able to perform an automatic or interactive quality control on FCS data acquired using flow cytometry instruments. By evaluating three different properties:
flow rate
signal acquisition, and
dynamic range,
the quality control enables the detection and removal of anomalies.
Sleuth is a program for differential analysis of RNA-Seq data. It makes use of quantification uncertainty estimates obtained via Kallisto for accurate differential analysis of isoforms or genes, allows testing in the context of experiments with complex designs, and supports interactive exploratory data analysis via sleuth live.
Colored terminal output on terminals that support ANSI color and highlight codes. It also works in Emacs ESS. ANSI color support is automatically detected. Colors and highlighting can be combined and nested. New styles can also be created easily. This package was inspired by the "chalk" JavaScript project.
This package provides efficient tools to compute the proximity between rows or columns of large matrices. Functions are optimised for large sparse matrices using the Armadillo and Intel TBB libraries. Among several built-in similarity/distance measures, computation of correlation, cosine similarity and Euclidean distance is particularly fast.
ZeroMQ is a well-known library for high-performance asynchronous messaging in scalable, distributed applications. This package provides high level R wrapper functions to easily utilize ZeroMQ. The main focus is on interactive client/server programming frameworks. A few wrapper functions compatible with rzmq
are also provided.
The ggplot2 package is an excellent and flexible package for elegant data visualization in R. However the default generated plots require some formatting before we can send them for publication. The ggpubr package provides some easy-to-use functions for creating and customizing ggplot2-based publication-ready plots.
This package provides a set of tools for inspecting and understanding R data structures inspired by str
. It includes ast
for visualizing abstract syntax trees, ref
for showing shared references, cst
for showing call stack trees, and obj_size
for computing object sizes.
This package enables the translation of ggplot2 graphs to an interactive web-based version and/or the creation of custom web-based visualizations directly from R. Once uploaded to a plotly account, plotly graphs (and the data behind them) can be viewed and modified in a web browser.
This package provides tools for robust regression model fitting using the RANSAC (Random Sample Consensus) algorithm. RANSAC is an iterative method to estimate parameters of a model from a dataset that contains outliers. This package allows fitting both linear lm and nonlinear nls models using RANSAC, helping users obtain more reliable models in the presence of noisy or corrupted data. The methods are particularly useful in contexts where traditional least squares regression fails due to the influence of outliers. Implementations include support for performance metrics such as RMSE, MAE, and R² based on the inlier subset. For further details, see Fischler and Bolles (1981) <doi:10.1145/358669.358692>.
This package provides functions for implementing the Analysis-of-marginal-Tail-Means (ATM) method, a robust optimization method for discrete black-box optimization. Technical details can be found in Mak and Wu (2018+) <arXiv:1712.03589>
. This work was supported by USARO grant W911NF-17-1-0007.
Prior transcription factor binding knowledge and target gene expression data are integrated in a Bayesian framework for functional cis-regulatory module inference. Using Gibbs sampling, we iteratively estimate transcription factor associations for each gene, regulation strength for each binding event and the hidden activity for each transcription factor.
Computes classification accuracy and consistency indices under Item Response Theory. Implements the total score IRT-based methods in Lee, Hanson & Brennen (2002) and Lee (2010), the IRT-based methods in Rudner (2001, 2005), and the total score nonparametric methods in Lathrop & Cheng (2014). For dichotomous and polytomous tests.