Constructs tables of counts and proportions out of data sets with possibility to insert tables to Excel, Word, HTML, and PDF documents. Transforms tables to data suitable for modelling. Features Gibbs sampling based log-linear (NB2) and power analyses (original by Oleksandr Ocheredko <doi:10.35566/isdsa2019c5>) for tabulated data.
Maximum entropy density based dependent data bootstrap. An algorithm is provided to create a population of time series (ensemble) without assuming stationarity. The reference paper (Vinod, H.D., 2004 <DOI: 10.1016/j.jempfin.2003.06.002>) explains how the algorithm satisfies the ergodic theorem and the central limit theorem.
Quantifies and removes technical noise from high-throughput sequencing data. Two approaches are used, one based on the count matrix, and one using the alignment BAM files directly. Contains several options for every step of the process, as well as tools to quality check and assess the stability of output.
Create carousels using the JavaScript
library Swiper and the package htmlwidgets'. The carousels can be displayed in the RStudio viewer pane, in Shiny applications and in R markdown documents. The package also provides a RStudio addin allowing to choose image files and to display them in the viewer pane.
Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.
Two one-sided tests (TOST) procedure to test equivalence for t-tests, correlations, differences between proportions, and meta-analyses, including power analysis for t-tests and correlations. Allows you to specify equivalence bounds in raw scale units or in terms of effect sizes. See: Lakens (2017) <doi:10.1177/1948550617697177>.
Craft polished tables and plots in Markdown reports. Simply choose whether to treat your data as counts or metrics, and the package will automatically generate well-designed default tables and plots for you. Boiled down to the basics, with labeling features and simple interactive reports. All functions are tidyverse compatible.
An easy-to-use interface for interacting with WebDAV
servers, including OwnCloud
'. It simplifies the use of WebDAV
methods such as COPY, MOVE, DELETE and others. With built-in authentication and request handling, it allows for easy management of files and directories over the WebDAV
protocol.
Permutations tests to identify factor correlated to zero-inflated proportions response. Provide a performance indicator based on Spearman correlation to quantify the part of correlation explained by the selected set of factors. See details for the method at the following preprint e.g.: <https://hal.archives-ouvertes.fr/hal-02936779v3>.
Facilitates making a connection to the Zendesk API and executing various queries. You can use it to get ticket, ticket metrics, and user data. The Zendesk documentation is available at <https://developer.zendesk.com/rest_api /docs/support/introduction>. This package is not supported by Zendesk (owner of the software).
In order to create smooth animation between states of data, tweening is necessary. This package provides a range of functions for creating tweened data that can be used as basis for animation. Furthermore it adds a number of vectorized interpolaters for common R data types such as numeric, date and color.
This package generates area-proportional Euler diagrams using numerical optimization. An Euler diagram is a generalization of a Venn diagram, relaxing the criterion that all interactions need to be represented. Diagrams may be fit with ellipses and circles via a wide range of inputs and can be visualized in numerous ways.
Adaptation of the Matlab tsEVA
toolbox developed by Lorenzo Mentaschi available here: <https://github.com/menta78/tsEva>
. It contains an implementation of the Transformed-Stationary (TS) methodology for non-stationary extreme value Analysis (EVA) as described in Mentaschi et al. (2016) <doi:10.5194/hess-20-3527-2016>. In synthesis this approach consists in: (i) transforming a non-stationary time series into a stationary one to which the stationary extreme value theory can be applied; and (ii) reverse-transforming the result into a non-stationary extreme value distribution. RtsEva
offers several options for trend estimation (mean, extremes, seasonal) and contains multiple plotting functions displaying different aspects of the non-stationarity of extremes.
Facilities for running simulations from ordinary differential equation ('ODE') models, such as pharmacometrics and other compartmental models. A compilation manager translates the ODE model into C, compiles it, and dynamically loads the object code into R for improved computational efficiency. An event table object facilitates the specification of complex dosing regimens (optional) and sampling schedules. NB: The use of this package requires both C and Fortran compilers, for details on their use with R please see Section 6.3, Appendix A, and Appendix D in the "R Administration and Installation" manual. Also the code is mostly released under GPL. The VODE and LSODA are in the public domain. The information is available in the inst/COPYRIGHTS.
This package provides ANOCVA (ANalysis Of Cluster VAriability), a non-parametric statistical test to compare clustering structures with applications in functional magnetic resonance imaging data (fMRI
). The ANOCVA allows us to compare the clustering structure of multiple groups simultaneously and also to identify features that contribute to the differential clustering.
Test the robustness of a user's Qualitative Comparative Analysis solutions to randomness, using the bootstrapped assessment: baQCA()
. This package also includes a function that provides recommendations for improving solutions to reach typical significance levels: brQCA()
. Data included come from McVeigh
et al. (2014) <doi:10.1177/0003122414534065>.
This package provides advanced Bayesian methods to estimate abundance and run-timing from temporally-stratified Petersen mark-recapture experiments. Methods include hierarchical modelling of the capture probabilities and spline smoothing of the daily run size. Theory described in Bonner and Schwarz (2011) <doi:10.1111/j.1541-0420.2011.01599.x>.
The Certifiably Optimal RulE
ListS
(Corels) learner by Angelino et al described in <doi:10.48550/arXiv.1704.01701>
provides interpretable decision rules with an optimality guarantee, and is made available to R with this package. See the file AUTHORS for a list of copyright holders and contributors.
This package provides datasets containing preformatted maps of Norway at the county, municipality, and ward (Oslo only) level for redistricting in 2024, 2020, 2018, and 2017. Multiple layouts are provided (normal, split, and with an insert for Oslo), allowing the user to rapidly create choropleth maps of Norway without any geolibraries.
Makes deck.gl <https://deck.gl/>, a WebGL-powered
open-source JavaScript
framework for visual exploratory data analysis of large datasets, available within R via the htmlwidgets package. Furthermore, it supports basemaps from mapbox <https://www.mapbox.com/> via mapbox-gl-js <https://github.com/mapbox/mapbox-gl-js>.
Package EDISON (Estimation of Directed Interactions from Sequences Of Non-homogeneous gene expression) runs an MCMC simulation to reconstruct networks from time series data, using a non-homogeneous, time-varying dynamic Bayesian network. Networks segments and changepoints are inferred concurrently, and information sharing priors provide a reduction of the inference uncertainty.
Fits Bayesian regression models based on latent Meshed Gaussian Processes (MGP) as described in Peruzzi, Banerjee, Finley (2020) <doi:10.1080/01621459.2020.1833889>, Peruzzi, Banerjee, Dunson, and Finley (2021) <arXiv:2101.03579>
, Peruzzi and Dunson (2022) <arXiv:2201.10080>
. Funded by ERC grant 856506 and NIH grant R01ES028804.
This package provides tools for computing Monte Carlo standard errors (MCSE) in Markov chain Monte Carlo (MCMC) settings. MCSE computation for expectation and quantile estimators is supported as well as multivariate estimations. The package also provides functions for computing effective sample size and for plotting Monte Carlo estimates versus sample size.
Fit flexible (excess) hazard regression models with the possibility of including non-proportional effects of covariables and of adding a random effect at the cluster level (corresponding to a shared frailty). A detailed description of the package functionalities is provided in Charvat and Belot (2021) <doi: 10.18637/jss.v098.i14>.