This package provides a parametrization framework for finite mixture distribution using S4 objects. Density, cumulative density, quantile and simulation functions are defined. Currently normal, Tukey g-&-h, skew-normal and skew-t distributions are well tested. The gamma, negative binomial distributions are being tested.
The holonomic gradient method (HGM, hgm) gives a way to evaluate normalization constants of unnormalized probability distributions by utilizing holonomic systems of differential or difference equations. The holonomic gradient descent (HGD, hgd) gives a method to find maximal likelihood estimates by utilizing the HGM.
This package provides tools for passing messages between R processes. Shiny examples are provided showing how to perform useful tasks such as: updating reactive values from within a future, progress bars for long running async tasks, and interrupting async tasks based on user input.
This package provides tools to import survey files in the .sss (triple-s) format. The package provides the function read.sss() that reads the .asc (or .csv') and .sss files of a triple-s survey data file. See also <https://triple-s.org/>.
Dynamic Transcriptome Analysis (DTA) can monitor the cellular response to perturbations with higher sensitivity and temporal resolution than standard transcriptomics. The package implements the underlying kinetic modeling approach capable of the precise determination of synthesis- and decay rates from individual microarray or RNAseq measurements.
oai provides a general purpose client to work with any Open Archives Initiative Protocol for 'Metadata' Harvesting (OAI-PMH) service. Functions are provided to work with the OAI-PMH verbs: GetRecord, Identify, ListIdentifiers, ListMetadataFormats, ListRecords, and ListSets.
This is a package supporting the analysis of multivariate dichotomous and polytomous data using latent trait models under the Item Response Theory approach. It includes the Rasch, the Two-Parameter Logistic, the Birnbaum's Three-Parameter, the Graded Response, and the Generalized Partial Credit Models.
Efficient simulation of Brownian semistationary (BSS) processes using the hybrid simulation scheme, as described in Bennedsen, Lunde, Pakkannen (2017) <arXiv:1507.03004v4>, as well as functions to fit BSS processes to data, and functions to estimate the stochastic volatility process of a BSS process.
Density surface modelling of line transect data. A Generalized Additive Model-based approach is used to calculate spatially-explicit estimates of animal abundance from distance sampling (also presence/absence and strip transect) data. Several utility functions are provided for model checking, plotting and variance estimation.
Minimal and memory efficient implementation of the junction tree algorithm using the Lauritzen-Spiegelhalter scheme; S. L. Lauritzen and D. J. Spiegelhalter (1988) <https://www.jstor.org/stable/2345762?seq=1>. The jti package is part of the paper <doi:10.18637/jss.v111.i02>.
An implementation of k-means specifically design to cluster longitudinal data. It provides facilities to deal with missing value, compute several quality criterion (Calinski and Harabatz, Ray and Turie, Davies and Bouldin, BIC, ...) and propose a graphical interface for choosing the best number of clusters.
Calculates the Most Probable Number (MPN) to quantify the concentration (density) of microbes in serial dilutions of a laboratory sample (described in Jarvis, 2010 <doi:10.1111/j.1365-2672.2010.04792.x>). Also calculates the Aerobic Plate Count (APC) for similar microbial enumeration experiments.
Fitting Multi-Parameter Regression (MPR) models to right-censored survival data. These are flexible parametric regression models which extend standard models, for example, proportional hazards. See Burke & MacKenzie (2016) <doi:10.1111/biom.12625> and Burke et al (2020) <doi:10.1111/rssc.12398>.
We fit causal models using proxies. We implement two stage proximal least squares estimator. E.J. Tchetgen Tchetgen, A. Ying, Y. Cui, X. Shi, and W. Miao. (2020). An Introduction to Proximal Causal Learning. arXiv e-prints, arXiv-2009 <arXiv:2009.10982>.
Monte Carlo based model choice for applied phylogenetics of continuous traits. Method described in Carl Boettiger, Graham Coop, Peter Ralph (2012) Is your phylogeny informative? Measuring the power of comparative methods, Evolution 66 (7) 2240-51. <doi:10.1111/j.1558-5646.2011.01574.x>.
Estimates the parameters of a Transformed Ornstein-Uhlenbeck (TOU) stochastic model for adsorption data and also the parameters of the related pseudo-n-order (PNO) model, such as the maximum adsorption capacity (qe), the adsorption rate constant (kn) and the order of the model (n).
This package provides MCMC algorithms for the analysis of zero-inflated count models. The case of stochastic search variable selection (SVS) is also considered. All MCMC samplers are coded in C++ for improved efficiency. A data set considering the demand for health care is provided.
This packages provides a single function, readEDS. This is a low-level utility for reading in Alevin EDS format into R. This function is not designed for end-users but instead the package is predominantly for simplifying package dependency graph for other Bioconductor packages.
Package is a part of the gDR suite. It reexports functions from other packages in the gDR suite that contain critical processing functions and utilities. The vignette walks through the full processing pipeline for drug response analyses that the gDR suite offers.
This package provides a collection of pre-optimized space-filling designs, for up to ten parameters, is contained here. Functions are provided to access designs described by Husslage et al (2011) and Wang and Fang (2005). The design types included are Audze-Eglais, MaxiMin, and uniform.
Calculates some antecedent discharge conditions useful in water quality modeling. Includes methods for calculating flow anomalies, base flow, and smooth discounted flows from daily flow measurements. Antecedent discharge algorithms are described and reviewed in Zhang and Ball (2017) <doi:10.1016/j.jhydrol.2016.12.052>.
For multiscale analysis, this package carries out empirical mode decomposition and Hilbert spectral analysis. For usage of EMD, see Kim and Oh, 2009 (Kim, D and Oh, H.-S. (2009) EMD: A Package for Empirical Mode Decomposition and Hilbert Spectrum, The R Journal, 1, 40-46).
Forest-based statistical estimation and inference. GRF provides non-parametric methods for heterogeneous treatment effects estimation (optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables), as well as least-squares regression, quantile regression, and survival regression, all with support for missing covariates.
Hard drive data: Class of data allowing the easy importation/manipulation of out of memory data sets. The data sets are located on disk but look like in-memory, the syntax for manipulation is similar to data.table'. Operations are performed "chunk-wise" behind the scene.