This package provides routines for the statistical analysis of landmark shapes, including Procrustes analysis, graphical displays, principal components analysis, permutation and bootstrap tests, thin-plate spline transformation grids and comparing covariance matrices. See Dryden, I.L. and Mardia, K.V. (2016). Statistical shape analysis, with Applications in R (2nd Edition), John Wiley and Sons.
This package contains a collection of various functions to assist in R programming, such as tools to assist in developing, updating, and maintaining R and R packages, calculating the logit and inverse logit transformations, tests for whether a value is missing, empty or contains only NA
and NULL
values, and many more.
This package provides a Rust implementation of a TAR file reader and writer. This library does not currently handle compression, but it is abstract over all I/O readers and writers. Additionally, great lengths are taken to ensure that the entire contents are never required to be entirely resident in memory all at once.
This package performs the Joint and Individual Variation Explained (JIVE) decomposition on a list of data sets when the data share a dimension, returning low-rank matrices that capture the joint and individual structure of the data [O'Connell, MJ and Lock, EF (2016) <doi:10.1093/bioinformatics/btw324>]. It provides two methods of rank selection when the rank is unknown, a permutation test and a Bayesian Information Criterion (BIC) selection algorithm. Also included in the package are three plotting functions for visualizing the variance attributed to each data source: a bar plot that shows the percentages of the variability attributable to joint and individual structure, a heatmap that shows the structure of the variability, and principal component plots.
Transform coordinates from a specified source to a specified target map projection. This uses the PROJ library directly, by wrapping the PROJ package which leverages libproj', otherwise the proj4 package. The reproj()
function is generic, methods may be added to remove the need for an explicit source definition. If proj4 is in use reproj()
handles the requirement for conversion of angular units where necessary. This is for use primarily to transform generic data formats and direct leverage of the underlying PROJ library. (There are transformations that aren't possible with PROJ and that are provided by the GDAL library, a limitation which users of this package should be aware of.) The PROJ library is available at <https://proj.org/>.
This package provides direct access to the ALFRED (<https://alfred.stlouisfed.org>) and FRED (<https://fred.stlouisfed.org>) databases. Its functions return tidy data frames for different releases of the specified time series. Note that this product uses the FRED© API but is not endorsed or certified by the Federal Reserve Bank of St. Louis.
Multicenter randomized trials involve the collection and analysis of data from numerous study participants across multiple sites. Outliers may be present. To identify outliers, this package examines data at the individual level (univariate and multivariate) and site-level (with and without covariate adjustment). Methods are outlined in further detail in Rigdon et al (to appear).
This package provides a new class of Bayesian meta-analysis models that incorporates a model for internal and external validity bias. In this way, it is possible to combine studies of diverse quality and different types. For example, we can combine the results of randomized control trials (RCTs) with the results of observational studies (OS).
This package provides functions for visualizing, animating, solving and analyzing the Rubik's cube. Includes data structures for solvable and unsolvable cubes, random moves and random state scrambles and cubes, 3D displays and animations using OpenGL
', patterned cube generation, and lightweight solvers. See Rokicki, T. (2008) <arXiv:0803.3435>
for the Kociemba solver.
Categorize links and nodes from multiple networks in 3 categories: Common links (alpha) specific links (gamma), and different links (beta). Also categorizes the links into sub-categories and groups. The package includes a visualization tool for the networks. More information about the methodology can be found at: Gysi et. al., 2018 <arXiv:1802.00828>
.
Semiparametric estimation for censored time series with lower detection limit. The latent response is a sequence of stationary process with Markov property of order one. Estimation of copula parameter(COPC) and Conditional quantile estimation are included for five available copula functions. Copula selection methods based on L2 distance from empirical copula function are also included.
An implementation of the probability mass function, cumulative density function, quantile function, random number generator, maximum likelihood estimator, and p-value generator from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.
Create D3 based SVG ('Scalable Vector Graphics') graphics using a simple R API. The package aims to simplify the creation of many SVG plot types using a straightforward R API. The package relies on the r2d3 R package and the D3 JavaScript
library. See <https://rstudio.github.io/r2d3/> and <https://d3js.org/> respectively.
This package provides simple functions to create constraints for small test assembly problems (e.g. van der Linden (2005, ISBN: 978-0-387-29054-6)) using sparse matrices. Currently, GLPK', lpSolve
', Symphony', and Gurobi are supported as solvers. The gurobi package is not available from any mainstream repository; see <https://www.gurobi.com/downloads/>.
This package provides efficient methods to compute local and genome wide genetic distances (corresponding to the so called Hudson Fst parameters) through moment method, perform chromosome segmentation into homogeneous Fst genomic regions, and selection sweep detection for multi-population comparison. When multiple profile segmentation is required, the procedure can be parallelized using the future package.
Generates efficient designs for discrete choice experiments based on the multinomial logit model, and individually adapted designs for the mixed multinomial logit model. The generated designs can be presented on screen and choice data can be gathered using a shiny application. Traets F, Sanchez G, and Vandebroek M (2020) <doi:10.18637/jss.v096.i03>.
Calculates various intraclass correlation coefficients used to quantify inter-rater and intra-rater reliability. The assumption here is that the raters produced quantitative ratings. Most of the statistical procedures implemented in this package are described in details in Gwet, K.L. (2014, ISBN:978-0970806284): "Handbook of Inter-Rater Reliability," 4th edition, Advanced Analytics, LLC.
This package provides a new class of Bayesian meta-analysis models that incorporates a model for internal and external validity bias. In this way, it is possible to combine studies of diverse quality and different types. For example, we can combine the results of randomized control trials (RCTs) with the results of observational studies (OS).
This package provides a self-guided, weakly supervised learning algorithm for feature extraction from noisy and high-dimensional data. It facilitates the identification of patterns that reflect underlying group structures across all samples in a dataset. The method incorporates a novel strategy to integrate spatial information, improving the interpretability of results in spatially resolved data.
This package provides functions for validating and normalizing bibliographic codes such as ISBN, ISSN, and LCCN. Also includes functions to communicate with the WorldCat
API, translate Call numbers (Library of Congress and Dewey Decimal) to their subject classifications or subclassifications, and provides various loadable data files such call number / subject crosswalks and code tables.
Compute lifetime attributable risk of radiation-induced cancer reveals that it can be helpful with enhancement of the flexibility in research with fast calculation and various options. Important reference papers include Berrington de Gonzalez et al. (2012) <doi:10.1088/0952-4746/32/3/205>, National Research Council (2006, ISBN:978-0-309-09156-5).
This package provides tools necessary to reconstruct clonal affiliations from temporally and/or spatially separated measurements of viral integration sites. For this means it utilizes correlations present in the relative readouts of the integration sites. Furthermore, facilities for filtering of the data and visualization of different steps in the pipeline are provided with the package.
The main goal of the psycho package is to provide tools for psychologists, neuropsychologists and neuroscientists, to facilitate and speed up the time spent on data analysis. It aims at supporting best practices and tools to format the output of statistical methods to directly paste them into a manuscript, ensuring statistical reporting standardization and conformity.
To Simplify the time consuming and error prone task of assembling complex data sets for non-linear mixed effects modeling. Users are able to select from different absorption processes such as zero and first order, or a combination of both. Furthermore, data sets containing data from several entities, responses, and covariates can be simultaneously assembled.