This package provides functions to estimate and visualize linear as well as nonlinear impulse responses based on local projections by Jordà (2005) <doi:10.1257/0002828053828518>. The methods and the package are explained in detail in Adämmer (2019) <doi:10.32614/RJ-2019-052>.
This package contains a collection of useful functions for basic data computation and manipulation, wrapper functions for generating ggplot2 graphics, including statistical model diagnostic plots, methods for computing statistical models quality measures (such as AIC, BIC, r squared, root mean squared error) and general utilities.
Distributions that are typically used for exposure rating in general insurance, in particular to price reinsurance contracts. The vignette shows code snippets to fit the distribution to empirical data. See, e.g., Bernegger (1997) <doi:10.2143/AST.27.1.563208> freely available on-line.
Allows various models for multivariate response variables where each response is assumed to follow double hierarchical generalized linear models. In double hierarchical generalized linear models, the mean, dispersion parameters for variance of random effects, and residual variance can be further modeled as random-effect models.
This package performs nonparametric estimation in mixture cure models, and significance tests for the cure probability. For details, see López-Cheda et al. (2017a) <doi:10.1016/j.csda.2016.08.002> and López-Cheda et al. (2017b) <doi:10.1007/s11749-016-0515-1>.
An implementation of prediction intervals for random-effects meta-analysis: Higgins et al. (2009) <doi:10.1111/j.1467-985X.2008.00552.x>, Partlett and Riley (2017) <doi:10.1002/sim.7140>, and Nagashima et al. (2019) <doi:10.1177/0962280218773520>, <arXiv:1804.01054>.
The approach is based on the closed testing procedure to control familywise error rate in a strong sense. The local tests implemented are Wald-type and rank-score. The method is described in De Santis, et al., (2025), <doi:10.48550/arXiv.2511.07999>.
Method to estimate the spatial influence scales of landscape variables on a response variable. The method is based on Chandler and Hepinstall-Cymerman (2016) Estimating the spatial scales of landscape effects on abundance, Landscape ecology, 31: 1383-1394, <doi:10.1007/s10980-016-0380-z>.
Simulation of event histories with possibly non-linear baseline hazard rate functions, non-linear (time-varying) covariate effect functions, and dependencies on the past of the history. Random generation of event histories is performed using inversion sampling on the cumulative all-cause hazard rate functions.
Imports non-tabular from Excel files into R. Exposes cell content, position and formatting in a tidy structure for further manipulation. Tokenizes Excel formulas. Supports .xlsx and .xlsm via the embedded RapidXML C++ library <https://rapidxml.sourceforge.net>. Does not support .xlsb or .xls'.
Wrapper for using tapkee command line utility, it allows to run it from inside R and catch the results for further analysis and plotting. Tapkee is a program for fast dimension reduction, see package?tapkee and <http://tapkee.lisitsyn.me/> for installation and other details.
Most universities use specific color combinations to express their unique brand identity. The unicol package provides the colors and color palettes of various universities for easy plotting and printing in R. We collect and provide a diverse range of color palettes for creating scientific visualizations.
This package provides a tool for multiply imputing missing data using MIDAS', a deep learning method based on denoising autoencoder neural networks (see Lall and Robinson, 2022; <doi:10.1017/pan.2020.49>). This algorithm offers significant accuracy and efficiency advantages over other multiple imputation strategies, particularly when applied to large datasets with complex features. Alongside interfacing with Python to run the core algorithm, this package contains functions for processing data before and after model training, running imputation model diagnostics, generating multiple completed datasets, and estimating regression models on these datasets. For more information see Lall and Robinson (2023) <doi:10.18637/jss.v107.i09>.
This package provides functions to make zebra-striped tables (tables with alternating row colors) in LaTeX and HTML formats easily from data.frame, matrix, lm, aov, anova, glm, coxph, nls, fitdistr, mytable and cbind.mytable objects.
This package provides a minor collection of HTTP wrappers for the Zamzar file conversion API. The wrappers makes it easy to utilize the API and thus convert between more than 100 different file formats (ranging from audio files, images, movie formats, etc., etc.) through an R session.
This add-on to the package CellNOptR handles time-course data, as opposed to steady state data in CellNOptR. It scales the simulation step to allow comparison and model fitting for time-course data. Future versions will optimize delays and strengths for each edge.
Channel interference in mass cytometry can cause spillover and may result in miscounting of protein markers. We develop a nonparametric finite mixture model and use the mixture components to estimate the probability of spillover. We implement our method using expectation-maximization to fit the mixture model.
Package that simulates adaptive (multi-arm, multi-stage) clinical trials using adaptive stopping, adaptive arm dropping, and/or adaptive randomisation. Developed as part of the INCEPT (Intensive Care Platform Trial) project (<https://incept.dk/>), primarily supported by a grant from Sygeforsikringen "danmark" (<https://www.sygeforsikring.dk/>).
Solving high-dimensional double sparse linear regression via an iterative hard thresholding algorithm. Furthermore, the method is extended to jointly estimate multiple graphical models. For more details, please see <https://www.jmlr.org/papers/v25/23-0653.html> and <doi:10.48550/arXiv.2503.18722>.
Generates nonparametric bootstrap confidence intervals (Efron and Tibshirani, 1993: <doi:10.1201/9780429246593>) for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm().
An R implementation of the Average Marginal Component-specific Effects (AMCE) estimator presented in Hainmueller, J., Hopkins, D., and Yamamoto T. (2014) <DOI:10.1093/pan/mpt024> Causal Inference in Conjoint Analysis: Understanding Multi-Dimensional Choices via Stated Preference Experiments. Political Analysis 22(1):1-30.
CGAL is a C++ library that aims to provide easy access to efficient and reliable algorithms in computational geometry. Since its version 4, CGAL can be used as standalone header-only library and is available under a double GPL-3|LGPL license. <https://www.cgal.org/>.
Low level functions for implementing maximum likelihood estimating procedures for complex models using data cloning and Bayesian Markov chain Monte Carlo methods as described in Solymos 2010 <doi:10.32614/RJ-2010-011>. Sequential and parallel MCMC support for JAGS', WinBUGS', OpenBUGS', and Stan'.
This package creates a data frame containing the metadata associated with the documentation of a collection of R packages. It allows for linking topic names to their corresponding documentation online. If you maintain a universe meta-package, it helps create a comprehensive reference for its website.