This package provides an interface to the FORCIS database (Chaabane et al. (2024) <doi:10.5281/zenodo.7390791>) on global foraminifera distribution. This package allows to download and to handle FORCIS data. It is part of the FRB-CESAB working group FORCIS. <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/forcis/>.
This package provides tools for sparse regression modelling with grouped predictors using the group subset selection penalty. Uses coordinate descent and local search algorithms to rapidly deliver near optimal estimates. The group subset penalty can be combined with a group lasso or ridge penalty for added shrinkage. Linear and logistic regression are supported, as are overlapping groups.
This package implements a new multiple imputation method that draws imputations from a latent joint multivariate normal model which underpins generally structured data. This model is constructed using a sequence of flexible conditional linear models that enables the resulting procedure to be efficiently implemented on high dimensional datasets in practice. See Robbins (2021) <arXiv:2008.02243>
.
This package implements the Hierarchical Incremental GRAdient Descent (HiGrad
) algorithm, a first-order algorithm for finding the minimizer of a function in online learning just like stochastic gradient descent (SGD). In addition, this method attaches a confidence interval to assess the uncertainty of its predictions. See Su and Zhu (2018) <arXiv:1802.04876>
for details.
Estimating the mean and variance of a covariate for the complier, never-taker and always-taker subpopulation in the context of instrumental variable estimation. This package implements the method described in Marbach and Hangartner (2020) <doi:10.1017/pan.2019.48> and Hangartner, Marbach, Henckel, Maathuis, Kelz and Keele (2021) <doi:10.48550/arXiv.2103.06328>
.
The "Manual on Low-flow Estimation and Prediction" (Gustard & Demuth (2009, ISBN:978-92-63-11029-9)), published by the World Meteorological Organisation, gives a comprehensive summary on how to analyse stream flow data focusing on low-flows. This packages provides functions to compute the described statistics and produces plots similar to the ones in the manual.
Toolset that enriches mlr with a diverse set of preprocessing operators. Composable Preprocessing Operators ("CPO"s) are first-class R objects that can be applied to data.frames and mlr "Task"s to modify data, can be attached to mlr "Learner"s to add preprocessing to machine learning algorithms, and can be composed to form preprocessing pipelines.
Implement surrogate-assisted feature extraction (SAFE) and common machine learning approaches to train and validate phenotyping models. Background and details about the methods can be found at Zhang et al. (2019) <doi:10.1038/s41596-019-0227-6>, Yu et al. (2017) <doi:10.1093/jamia/ocw135>, and Liao et al. (2015) <doi:10.1136/bmj.h1885>.
Quantile regression (QR) for Nonlinear Mixed-Effects Models via the asymmetric Laplace distribution (ALD). It uses the Stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum likelihood estimates and full inference result is for the fixed-effects and variance components. It also provides prediction and graphical summaries for assessing the algorithm convergence and fitting results.
This package implements moving-blocks bootstrap and extended tapered-blocks bootstrap, as well as smooth versions of each, for quantile regression in time series. This package accompanies the paper: Gregory, K. B., Lahiri, S. N., & Nordman, D. J. (2018). A smooth block bootstrap for quantile regression with time series. The Annals of Statistics, 46(3), 1138-1166.
This package provides tools for the simulation of data in the context of small area estimation. Combine all steps of your simulation - from data generation over drawing samples to model fitting - in one object. This enables easy modification and combination of different scenarios. You can store your results in a folder or start the simulation in parallel.
This package provides a comprehensive resource for data on Taylor Swift songs. Data is included for all officially released studio albums, extended plays (EPs), and individual singles are included. Data comes from Genius (lyrics) and Spotify (song characteristics). Additional functions are included for easily creating data visualizations with color palettes inspired by Taylor Swift's album covers.
Greedy optimal subset selection for transformation models (Hothorn et al., 2018, <doi:10.1111/sjos.12291> ) based on the abess algorithm (Zhu et al., 2020, <doi:10.1073/pnas.2014241117> ). Applicable to models from packages tram and cotram'. Application to shift-scale transformation models are described in Siegfried et al. (2024, <doi:10.1080/00031305.2023.2203177>).
Topological data analysis studies structure and shape of the data using topological features. We provide a variety of algorithms to learn with persistent homology of the data based on functional summaries for clustering, hypothesis testing, visualization, and others. We refer to Wasserman (2018) <doi:10.1146/annurev-statistics-031017-100045> for a statistical perspective on the topic.
It proposes a novel variable selection approach in classification problem that takes into account the correlations that may exist between the predictors of the design matrix in a high-dimensional logistic model. Our approach consists in rewriting the initial high-dimensional logistic model to remove the correlation between the predictors and in applying the generalized Lasso criterion.
r128gain is a multi platform command line tool to scan your audio files and tag them with loudness metadata (ReplayGain v2 or Opus R128 gain format), to allow playback of several tracks or albums at a similar loudness level. r128gain can also be used as a Python module from other Python projects to scan and/or tag audio files.
This R package lets you estimate signatures of mutational processes and their activities on mutation count data. Starting from a set of single-nucleotide variants (SNVs), it allows both estimation of the exposure of samples to predefined mutational signatures (including whether the signatures are present at all), and identification of signatures de novo from the mutation counts.
This package provides tools for data importation, recoding, and inspection. There are functions to create new project folders, R code templates, create uniquely named output directories, and to quickly obtain a visual summary for each variable in a data frame. The main feature here is the systematic implementation of the "variable key" framework for data importation and recoding.
Nucleotide conversion sequencing experiments have been developed to add a temporal dimension to RNA-seq and single-cell RNA-seq. Such experiments require specialized tools for primary processing such as GRAND-SLAM, and specialized tools for downstream analyses. grandR
provides a comprehensive toolbox for quality control, kinetic modeling, differential gene expression analysis and visualization of such data.
Redshift adjusts the color temperature according to the position of the sun. A different color temperature is set during night and daytime. During twilight and early morning, the color temperature transitions smoothly from night to daytime temperature to allow your eyes to slowly adapt. At night the color temperature should be set to match the lamps in your room.
Analysis of DNA mixtures involving relatives by computation of likelihood ratios that account for dropout and drop-in, mutations, silent alleles and population substructure. This is useful in kinship cases, like non-invasive prenatal paternity testing, where deductions about individuals relationships rely on DNA mixtures, and in criminal cases where the contributors to a mixed DNA stain may be related. Relationships are represented by pedigrees and can include kinship between more than two individuals. The main function is relMix()
and its graphical user interface relMixGUI()
. The implementation and method is described in Dorum et al. (2017) <doi:10.1007/s00414-016-1526-x>, Hernandis et al. (2019) <doi:10.1016/j.fsigss.2019.09.085> and Kaur et al. (2016) <doi:10.1007/s00414-015-1276-1>.
Helps users in quickly visualizing risk-of-bias assessments performed as part of a systematic review. It allows users to create weighted bar-plots of the distribution of risk-of-bias judgments within each bias domain, in addition to traffic-light plots of the specific domain-level judgments for each study. The resulting figures are of publication quality and are formatted according the risk-of-bias assessment tool use to perform the assessments. Currently, the supported tools are ROB2.0 (for randomized controlled trials; Sterne et al (2019) <doi:10.1136/bmj.l4898>), ROBINS-I (for non-randomised studies of interventions; Sterne et al (2016) <doi:10.1136/bmj.i4919>), and QUADAS-2 (for diagnostic accuracy studies; Whiting et al (2011) <doi:10.7326/0003-4819-155-8-201110180-00009>).
Implementation of the technique of Lleonart et al. (2000) <doi:10.1006/jtbi.2000.2043> to scale body measurements that exhibit an allometric growth. This procedure is a theoretical generalization of the technique used by Thorpe (1975) <doi:10.1111/j.1095-8312.1975.tb00732.x> and Thorpe (1976) <doi:10.1111/j.1469-185X.1976.tb01063.x>.
Bayesian analysis of luminescence data and C-14 age estimates. Bayesian models are based on the following publications: Combes, B. & Philippe, A. (2017) <doi:10.1016/j.quageo.2017.02.003> and Combes et al. (2015) <doi:10.1016/j.quageo.2015.04.001>. This includes, amongst others, data import, export, application of age models and palaeodose model.