Efficient tools for preparation, checking and post-processing of data in PK/PD (pharmacokinetics/pharmacodynamics) modeling, with focus on use of Nonmem, including consistency, traceability, and Nonmem compatibility of Data. Rigorously checks final Nonmem datasets. Implemented in data.table', but easily integrated with base and tidyverse'.
Extends the S3 generic function knit_print() in knitr to automatically print some objects using an appropriate format such as Markdown or LaTeX. For example, data frames are automatically printed as tables, and the help() pages can also be rendered in knitr documents.
This package implements a general framework for creating dependency graphs using projection as introduced in Fan, Feng and Xia (2019)<arXiv:1501.01617>. Both lasso and sparse additive model projections are implemented. Both Pearson correlation and distance covariance options are available to generate the graph.
This package contains tests for association between a set of genetic variants and multiple correlated outcomes that are interval censored. Interval-censored data arises when the exact time of the onset of an outcome of interest is unknown but known to fall between two time points.
This package implements multiple imputation of missing covariates by Substantive Model Compatible Fully Conditional Specification. This is a modification of the popular FCS/chained equations multiple imputation approach, and allows imputation of missing covariate values from models which are compatible with the user specified substantive model.
The Twilio web service provides an API for computer programs to interact with telephony. The included functions wrap the SMS and MMS portions of Twilio's API, allowing users to send and receive text messages from R. See <https://www.twilio.com/docs/> for more information.
This package provides a set of regular time-series datasets, describing the US electricity grid. That includes the total demand and supply, and as well as the demand by energy source (coal, solar, wind, etc.). Source: US Energy Information Administration (Dec 2019) <https://www.eia.gov/>.
Geneâ based association tests to model count data with excessive zeros and rare variants using zero-inflated Poisson/zero-inflated negative Binomial regression framework. This method was originally described by Fan, Sun, and Li in Genetic Epidemiology 46(1):73-86 <doi:10.1002/gepi.22438>.
This add-on to the package CellNOptR handles time-course data, as opposed to steady state data in CellNOptR. It scales the simulation step to allow comparison and model fitting for time-course data. Future versions will optimize delays and strengths for each edge.
Channel interference in mass cytometry can cause spillover and may result in miscounting of protein markers. We develop a nonparametric finite mixture model and use the mixture components to estimate the probability of spillover. We implement our method using expectation-maximization to fit the mixture model.
This package provides a minor collection of HTTP wrappers for the Zamzar file conversion API. The wrappers makes it easy to utilize the API and thus convert between more than 100 different file formats (ranging from audio files, images, movie formats, etc., etc.) through an R session.
This package provides functions to make zebra-striped tables (tables with alternating row colors) in LaTeX and HTML formats easily from data.frame, matrix, lm, aov, anova, glm, coxph, nls, fitdistr, mytable and cbind.mytable objects.
This package provides a template model module, tools to help find model modules derived from this template and a programming syntax to use these modules in health economic analyses. These elements are the foundation for a prototype software framework for developing living and transferable models and using those models in reproducible health economic analyses. The software framework is extended by other R libraries. For detailed documentation about the framework and how to use it visit <https://www.ready4-dev.com/>. For a background to the methodological issues that the framework is attempting to help solve, see Hamilton et al. (2024) <doi:10.1007/s40273-024-01378-8>.
This package provides a piped query generator based on Edgar F. Codd's relational algebra, and on production experience using SQL and dplyr at big data scale. The design represents an attempt to make SQL more teachable by denoting composition by a sequential pipeline notation instead of nested queries or functions. The implementation delivers reliable high performance data processing on large data systems such as Spark', databases, and data.table'. Package features include: data processing trees or pipelines as observable objects (able to report both columns produced and columns used), optimized SQL generation as an explicit user visible table modeling step, plus explicit query reasoning and checking.
Validates estimates of (conditional) average treatment effects obtained using observational data by a) making it easy to obtain and visualize estimates derived using a large variety of methods (G-computation, inverse propensity score weighting, etc.), and b) ensuring that estimates are easily compared to a gold standard (i.e., estimates derived from randomized controlled trials). RCTrep offers a generic protocol for treatment effect validation based on four simple steps, namely, set-selection, estimation, diagnosis, and validation. RCTrep provides a simple dashboard to review the obtained results. The validation approach is introduced by Shen, L., Geleijnse, G. and Kaptein, M. (2023) <doi:10.21203/rs.3.rs-2559287/v2>.
Simple radiocarbon calibration and chronological analysis. This package allows the calibration of radiocarbon ages and modern carbon fraction values using multiple calibration curves. It allows the calculation of highest density region intervals and credible intervals. The package also provides tools for visualising results and estimating statistical summaries.
We aim to deal with data with measurement error in the response and misclassification censoring status under an AFT model. This package primarily contains three functions, which are used to generate artificial data, correction for error-prone data and estimate the functional covariates for an AFT model.
An efficient Rcpp implementation of the Adaptive Rejection Metropolis Sampling (ARMS) algorithm proposed by Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995) <doi:10.2307/2986138>. This allows for sampling from a univariate target probability distribution specified by its (potentially unnormalised) log density.
The goal of the package is to provide an easy-to-use method for estimating degrees of relatedness (up to the second degree) for extreme low-coverage data. The package also allows users to quantify and visualise the level of confidence in the estimated degrees of relatedness.
The vctrs package provides a concept of vector prototype that can be especially useful when deploying models and code. Serialize these object prototypes to JSON so they can be used to check and coerce data in production systems, and deserialize JSON back to the correct object prototypes.
Perform the functional modeling methods of Huang and Wang (2018) <doi:10.1111/biom.12741> to accommodate dependent error in covariates of the proportional hazards model. The adopted measurement error model has minimal assumptions on the dependence structure, and an instrumental variable is supposed to be available.
This package provides tools for fitting the copCAR (Hughes, 2015) <DOI:10.1080/10618600.2014.948178> regression model for discrete areal data. Three types of estimation are supported (continuous extension, composite marginal likelihood, and distributional transform), for three types of outcomes (Bernoulli, negative binomial, and Poisson).
This package provides functions to numericise R objects (coerce to numeric objects), summarise MCMC (Monte Carlo Markov Chain) samples and calculate deviance residuals as well as R translations of some BUGS (Bayesian Using Gibbs Sampling), JAGS (Just Another Gibbs Sampler), STAN and TMB (Template Model Builder) functions.
This package contains tools for formatting inline code, renaming redundant columns, aggregating age categories, adding survey weights, finding the earliest date of an event, plotting z-curves, generating population counts and calculating proportions with confidence intervals. This is part of the R4Epis project <https://r4epis.netlify.app/>.