Calculate mean statistics and leaf angle distribution type from measured leaf inclination angles. LAD distribution is fitted using a two-parameters (mu, nu) Beta distribution and compared with six theoretical LAD distributions. Additional information is provided in Chianucci and Cesaretti (2022) <doi:10.1101/2022.10.28.513998>.
This package contains the Markov cluster algorithm (MCL) for identifying clusters in networks and graphs. The algorithm simulates random walks on a (n x n) matrix as the adjacency matrix of a graph. It alternates an expansion step and an inflation step until an equilibrium state is reached.
An aggressive dimensionality reduction and network estimation technique for a high-dimensional Gaussian graphical model (GGM). Please refer to: Efficient Dimensionality Reduction for High-Dimensional Network Estimation, Safiye Celik, Benjamin A. Logsdon, Su-In Lee, Proceedings of The 31st International Conference on Machine Learning, 2014, p. 1953--1961.
Fits non-homogeneous Markov multistate models and misclassification-type hidden Markov models in continuous time to intermittently observed data. Implements the methods in Titman (2011) <doi:10.1111/j.1541-0420.2010.01550.x>. Uses direct numerical solution of the Kolmogorov forward equations to calculate the transition probabilities.
The package solves linear system of equations Ax=b by using Preconditioned Conjugate Gradient Algorithm where A is real symmetric positive definite matrix. A suitable preconditioner matrix may be provided by user. This can also be used to minimize quadratic function (x'Ax)/2-bx for unknown x.
This package implements a novel predictive model, Partially Interpretable Estimators (PIE), which jointly trains an interpretable model and a black-box model to achieve high predictive performance as well as partial model. See the paper, Wang, Yang, Li, and Wang (2021) <doi:10.48550/arXiv.2105.02410>
.
This package provides different specifications of a Quadrilateral Dissimilarity Model which can be used to fit same-different judgments in order to get a predicted matrix that satisfies regular minimality [Colonius & Dzhafarov, 2006, Measurement and representations of sensations, Erlbaum]. From such a matrix, Fechnerian distances can be computed.
The skew logistic distribution is a quantile-defined generalisation of the logistic distribution (van Staden and King 2015). Provides random numbers, quantiles, probabilities, densities and density quantiles for the distribution. It provides Quantile-Quantile plots and method of L-Moments estimation (including asymptotic standard errors) for the distribution.
The X13-ARIMA-SEATS <https://www.census.gov/data/software/x13as.html> methodology and software is a widely used software and developed by the US Census Bureau. It can be accessed from R with this package and X13-ARIMA-SEATS binaries are provided by the R package x13binary'.
This package provides bitmapped vectors of booleans (no NA
s), coercion from and to logicals, integers and integer subscripts, fast boolean operators and fast summary statistics. With bit
class vectors of true binary booleans, TRUE
and FALSE
can be stored with 1 bit only.
This package provides tools for the analysis of growth data: to extract an LMS table from a gamlss object, to calculate the standard deviation scores and its inverse, and to superpose two wormplots from different models. The package contains a some varieties of reference tables, especially for The Netherlands.
Causal Inference Assistance (CIA) for performing causal inference within the structural causal modelling framework. Structure learning is performed using partition Markov chain Monte Carlo (Kuipers & Moffa, 2017) and several additional functions have been added to help with causal inference. Kuipers and Moffa (2017) <doi:10.1080/01621459.2015.1133426>.
The state-of-the-art algorithms for distance metric learning, including global and local methods such as Relevant Component Analysis, Discriminative Component Analysis, Local Fisher Discriminant Analysis, etc. These distance metric learning methods are widely applied in feature extraction, dimensionality reduction, clustering, classification, information retrieval, and computer vision problems.
This package provides a consistent tool for downloading ECH data, processing them and generating new indicators: poverty, education, employment, etc. All data are downloaded from the official site of the National Institute of Statistics at <https://www.gub.uy/instituto-nacional-estadistica/datos-y-estadisticas/encuestas/encuesta-continua-hogares>.
Simplifies the process of importing and managing input-output matrices from Microsoft Excel into R, and provides a suite of functions for analysis. It leverages the R6 class for clean, memory-efficient object-oriented programming. Furthermore, all linear algebra computations are implemented in Rust to achieve highly optimized performance.
Forest data quality is a package containing nine methods of analysis for forest databases, from databases containing inventory data and growth models, the focus of the analyzes is related to the quality of the data present in the database with a focus on consistency , punctuality and completeness of data.
This package provides access to Uber's H3 geospatial indexing system via h3lib <https://CRAN.R-project.org/package=h3lib>. h3r is designed to mimic the H3 Application Programming Interface (API) <https://h3geo.org/docs/api/indexing/>, so that any function in the API is also available in h3r'.
The format KVH is a lightweight format that can be read/written both by humans and machines. It can be useful in situations where XML or alike formats seem to be an overkill. We provide an ability to parse KVH files in R pretty fast due to Rcpp use.
Routines to perform estimation and inference under the multivariate t-distribution <doi:10.1007/s10182-022-00468-2>. Currently, the following methodologies are implemented: multivariate mean and covariance estimation, hypothesis testing about equicorrelation and homogeneity of variances, the Wilson-Hilferty transformation, QQ-plots with envelopes and random variate generation.
Access the United States National Provider Identifier Registry API <https://npiregistry.cms.hhs.gov/api/>. Obtain and transform administrative data linked to a specific individual or organizational healthcare provider, or perform advanced searches based on provider name, location, type of service, credentials, and other attributes exposed by the API.
An implementation of network-based statistics in R using mixed effects models. Theoretical background for Network-Based Statistics can be found in Zalesky et al. (2010) <doi:10.1016/j.neuroimage.2010.06.041>. For Mixed Effects Models check the R package <https://CRAN.R-project.org/package=nlme>.
This package provides a collection of scripts and data files for the statistics text: "Process Improvement using Data" <https://learnche.org/pid> and the online course "Experimentation for Improvement" found on Coursera. The package contains code for designed experiments, data sets and other convenience functions used in the book.
This package provides functions to extract and handle commonly occurring principal phrases obtained from collections of texts. This package is based on, Small, E., & Cabrera, J. (2025). Principal phrase mining, an automated method for extracting meaningful phrases from text. International Journal of Computers and Applications, 47(1), 84รข 92.
The new QOI file format offers a very simple but efficient image compression algorithm. This package provides an easy and simple way to read, write and display bitmap images stored in the QOI (Quite Ok Image) format. It can read and write both files and in-memory raw vectors.