This package implements spatial and spatiotemporal GLMMs (Generalized Linear Mixed Effect Models) using TMB', fmesher', and the SPDE (Stochastic Partial Differential Equation) Gaussian Markov random field approximation to Gaussian random fields. One common application is for spatially explicit species distribution models (SDMs). See Anderson et al. (2024) <doi:10.1101/2022.03.24.485545>.
R functions are not supposed to print text without giving the user the option to turn the printing off or on using a Boolean verbose in a construct like if(verbose) print(...)'. But this black/white approach is rather rigid, and an approach with shades of gray might be more appropriate in many circumstances.
Statistical distribution in OOP (Object Oriented Programming) way. This package proposes a R6 class interface to classic statistical distribution, and new distributions can be easily added with the class AbstractDist. A useful point is the generic fit() method for each class, which uses a maximum likelihood estimation to find the parameters of a dataset, see, e.g. Hastie, T. and al (2009) <isbn:978-0-387-84857-0>. Furthermore, the rv_histogram class gives a non-parametric fit, with the same accessors that for the classic distribution. Finally, three random generators useful to build synthetic data are given: a multivariate normal generator, an orthogonal matrix generator, and a symmetric positive definite matrix generator, see Mezzadri, F. (2007) <arXiv:math-ph/0609050>.
This package muscat provides various methods and visualization tools for DS(differential splicing) analysis in multi-sample, multi-group, multi-(cell-)subpopulation scRNA-seq data, including cell-level mixed models and methods based on aggregated "pseudobulk" data, as well as a flexible simulation platform that mimics both single and multi-sample scRNA-seq data.
This package implements faster versions of base R functions (e.g. mean, standard deviation, covariance, weighted mean), mostly written in C++, along with miscellaneous functions for various purposes (e.g. create the histogram with fitted probability density function or probability mass function curve, create the body mass index groups, assess the linearity assumption in logistic regression).
This package provides the rx_fm, rx_power and rx_sdr tools for receiving data from SDRs, based on rtl_fm, rtl_power and rtl_sdr from RTL-SDR, but using the SoapySDR vendor-neutral SDR support library instead, intended to support a wider range of devices than RTL-SDR.
the R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify and rank each protein’s simultaneous impact into multiple complexes based on network topology and clustering. Package also enables estimating of co-occurrence of diseases across the network and specific clusters pointing towards shared/common mechanisms.
PIPETS provides statistically robust analysis for 3'-seq/term-seq data. It utilizes a sliding window approach to apply a Poisson Distribution test to identify genomic positions with termination read coverage that is significantly higher than the surrounding signal. PIPETS then condenses proximal signal and produces strand specific results that contain all significant termination peaks.
Combine generalised least squares methodology from the nlme package for dealing with autocorrelation with penalised least squares methods from the glmnet package to deal with high dimensionality. This pengls packages glues them together through an iterative loop. The resulting method is applicable to high dimensional datasets that exhibit autocorrelation, such as spatial or temporal data.
This package provides direct access to the ALFRED (<https://alfred.stlouisfed.org>) and FRED (<https://fred.stlouisfed.org>) databases. Its functions return tidy data frames for different releases of the specified time series. Note that this product uses the FRED© API but is not endorsed or certified by the Federal Reserve Bank of St. Louis.
This package provides a new class of Bayesian meta-analysis models that incorporates a model for internal and external validity bias. In this way, it is possible to combine studies of diverse quality and different types. For example, we can combine the results of randomized control trials (RCTs) with the results of observational studies (OS).
Multicenter randomized trials involve the collection and analysis of data from numerous study participants across multiple sites. Outliers may be present. To identify outliers, this package examines data at the individual level (univariate and multivariate) and site-level (with and without covariate adjustment). Methods are outlined in further detail in Rigdon et al (to appear).
Categorize links and nodes from multiple networks in 3 categories: Common links (alpha) specific links (gamma), and different links (beta). Also categorizes the links into sub-categories and groups. The package includes a visualization tool for the networks. More information about the methodology can be found at: Gysi et. al., 2018 <arXiv:1802.00828>.
This package provides functions for visualizing, animating, solving and analyzing the Rubik's cube. Includes data structures for solvable and unsolvable cubes, random moves and random state scrambles and cubes, 3D displays and animations using OpenGL', patterned cube generation, and lightweight solvers. See Rokicki, T. (2008) <arXiv:0803.3435> for the Kociemba solver.
An implementation of the probability mass function, cumulative density function, quantile function, random number generator, maximum likelihood estimator, and p-value generator from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.
Semiparametric estimation for censored time series with lower detection limit. The latent response is a sequence of stationary process with Markov property of order one. Estimation of copula parameter(COPC) and Conditional quantile estimation are included for five available copula functions. Copula selection methods based on L2 distance from empirical copula function are also included.
Create D3 based SVG ('Scalable Vector Graphics') graphics using a simple R API. The package aims to simplify the creation of many SVG plot types using a straightforward R API. The package relies on the r2d3 R package and the D3 JavaScript library. See <https://rstudio.github.io/r2d3/> and <https://d3js.org/> respectively.
This package provides simple functions to create constraints for small test assembly problems (e.g. van der Linden (2005, ISBN: 978-0-387-29054-6)) using sparse matrices. Currently, GLPK', lpSolve', Symphony', and Gurobi are supported as solvers. The gurobi package is not available from any mainstream repository; see <https://www.gurobi.com/downloads/>.
This package provides efficient methods to compute local and genome wide genetic distances (corresponding to the so called Hudson Fst parameters) through moment method, perform chromosome segmentation into homogeneous Fst genomic regions, and selection sweep detection for multi-population comparison. When multiple profile segmentation is required, the procedure can be parallelized using the future package.
This package provides a set of methods to simulate from and fit computational models of attentional selectivity. The package implements the dual-stage two-phase (DSTP) model of Hübner et al. (2010) <doi:10.1037/a0019471>, and the shrinking spotlight (SSP) model of White et al. (2011) <doi:10.1016/j.cogpsych.2011.08.001>.
Generates efficient designs for discrete choice experiments based on the multinomial logit model, and individually adapted designs for the mixed multinomial logit model. The generated designs can be presented on screen and choice data can be gathered using a shiny application. Traets F, Sanchez G, and Vandebroek M (2020) <doi:10.18637/jss.v096.i03>.
Calculates various intraclass correlation coefficients used to quantify inter-rater and intra-rater reliability. The assumption here is that the raters produced quantitative ratings. Most of the statistical procedures implemented in this package are described in details in Gwet, K.L. (2014, ISBN:978-0970806284): "Handbook of Inter-Rater Reliability," 4th edition, Advanced Analytics, LLC.
This package provides a new class of Bayesian meta-analysis models that incorporates a model for internal and external validity bias. In this way, it is possible to combine studies of diverse quality and different types. For example, we can combine the results of randomized control trials (RCTs) with the results of observational studies (OS).
Compute lifetime attributable risk of radiation-induced cancer reveals that it can be helpful with enhancement of the flexibility in research with fast calculation and various options. Important reference papers include Berrington de Gonzalez et al. (2012) <doi:10.1088/0952-4746/32/3/205>, National Research Council (2006, ISBN:978-0-309-09156-5).