An R package for estimating conditional multivariate reference regions. The reference region is non parametrically estimated using a kernel density estimator. Covariates effects on the multivariate response means vector and variance-covariance matrix, thus on the region shape, are estimated by flexible additive predictors. Continuous covariates non linear effects might be estimated using penalized splines smoothers. Confidence intervals for the covariates estimated effects might be derived from bootstrap resampling. Kernel density bandwidth can be estimated with different methods, including a method that optimize the region coverage. Numerical, and graphical, summaries can be obtained by the user in order to evaluate reference region performance with real data. Full mathematical details can be found in <doi:10.1002/sim.9163> and <doi:10.1007/s00477-020-01901-1>.
An implementation of calculating the R-squared measure as a total mediation effect size measure and its confidence interval for moderate- or high-dimensional mediator models. It gives an option to filter out non-mediators using variable selection methods. The original R package is directly related to the paper Yang et al (2021) "Estimation of mediation effect for high-dimensional omics mediators with application to the Framingham Heart Study" <doi:10.1101/774877>. The new version contains a choice of using cross-fitting, which is computationally faster. The details of the cross-fitting method are available in the paper Xu et al (2023) "Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting" <doi:10.1101/2023.02.06.527391>.
Optimize one or two-arm, two-stage designs for clinical trials with respect to several implemented objective criteria or custom objectives. Optimization under uncertainty and conditional (given stage-one outcome) constraints are supported. See Pilz et al. (2019) <doi:10.1002/sim.8291> and Kunzmann et al. (2021) <doi:10.18637/jss.v098.i09> for details.
Computes appropriate confidence intervals for the likelihood ratio tests commonly used in medicine/epidemiology, using the method of Marill et al. (2015) <doi:10.1177/0962280215592907>. It is particularly useful when the sensitivity or specificity in the sample is 100%. Note that this does not perform the test on nested models--for that, see epicalc::lrtest'.
Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Goodness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs and TERGMs. The methods are described in Leifeld, Cranmer and Desmarais (2018), JStatSoft <doi:10.18637/jss.v083.i06>.
This package provides classes for storing and manipulating arbitrary-precision integer vectors and high-precision floating-point vectors. These extend the range and precision of the integer and double data types found in R. This package utilizes the Boost.Multiprecision C++ library. It is specifically designed to work well with the tidyverse collection of R packages.
Fetches the Cornell Lab of Ornithology Open Tree of Life (clootl) tree in a specified taxonomy. Optionally prune it to a given set of study taxa. Provide a recommended citation list for the studies that informed the extracted tree. Tree generated as described in McTavish et al. (2024) <doi:10.1101/2024.05.20.595017>.
This package provides a deep neural network model with a monotonic increasing single index function tailored for periodontal disease studies. The residuals are assumed to follow a skewed T distribution, a skewed normal distribution, or a normal distribution. More details can be found at Liu, Huang, and Bai (2024) <doi:10.1016/j.csda.2024.108012>.
This package provides a unified interface for connecting to databases ('SQLite', MySQL', PostgreSQL'). Just provide the database name and the package will ask you questions to help you configure the connection and setup your credentials. Once database configuration and connection has been set up once, you won't have to do it ever again.
Fit the penalized Cox models with both non-overlapping and overlapping grouped penalties including the group lasso, group smoothly clipped absolute deviation, and group minimax concave penalty. The algorithms combine the MM approach and group-wise descent with some computational tricks including the screening, active set, and warm-start. Different tuning regularization parameter methods are provided.
Independent vector analysis (IVA) is a blind source separation (BSS) model where several datasets are jointly unmixed. This package provides several methods for the unmixing together with some performance measures. For details, see Anderson et al. (2011) <doi:10.1109/TSP.2011.2181836> and Lee et al. (2007) <doi:10.1016/j.sigpro.2007.01.010>.
JSON-LD <https://www.w3.org/TR/json-ld/> is a light-weight syntax for expressing linked data. It is primarily intended for web-based programming environments, interoperable web services and for storing linked data in JSON-based databases. This package provides bindings to the JavaScript library for converting, expanding and compacting JSON-LD documents.
Evaluation of the Jacobi theta functions and related functions: Weierstrass elliptic function, Weierstrass sigma function, Weierstrass zeta function, Klein j-function, Dedekind eta function, lambda modular function, Jacobi elliptic functions, Neville theta functions, Eisenstein series, lemniscate elliptic functions, elliptic alpha function, Rogers-Ramanujan continued fractions, and Dixon elliptic functions. Complex values of the variable are supported.
This package provides a toolkit for absolute and relative dating and analysis of chronological patterns. This package includes functions for chronological modeling and dating of archaeological assemblages from count data. It provides methods for matrix seriation. It also allows to compute time point estimates and density estimates of the occupation and duration of an archaeological site.
This package provides methods to construct multivariate grids, which can be used for multivariate quadrature. This grids can be based on different quadrature rules like Newton-Cotes formulas (trapezoidal-, Simpson's- rule, ...) or Gauss quadrature (Gauss-Hermite, Gauss-Legendre, ...). For the construction of the multidimensional grid the product-rule or the combination- technique can be applied.
This package implements methods to normalize multiplexed imaging data, including statistical metrics and visualizations to quantify technical variation in this data type. Reference for methods listed here: Harris, C., Wrobel, J., & Vandekar, S. (2022). mxnorm: An R Package to Normalize Multiplexed Imaging Data. Journal of Open Source Software, 7(71), 4180, <doi:10.21105/joss.04180>.
This package provides a general framework for computing powers of matrices. A key feature is the capability for users to write callback functions, called after each iteration, thus enabling customization for specific applications. Diverse types of matrix classes/matrix multiplication are accommodated. If the multiplication type computes in parallel, then the package computation is also parallel.
Calculates D-, Ds-, A-, I- and L-optimal designs for non-linear models, via an implementation of the cocktail algorithm (Yu, 2011, <doi:10.1007/s11222-010-9183-2>). Compares designs via their efficiency, and augments any design with a controlled efficiency. An efficient rounding function has been provided to transform approximate designs to exact designs.
Parse messy geographic coordinates from various character formats to decimal degree numeric values. Parse coordinates into their parts (degree, minutes, seconds); calculate hemisphere from coordinates; pull out individually degrees, minutes, or seconds; add and subtract degrees, minutes, and seconds. C++ code herein originally inspired from code written by Jeffrey D. Bogan, but then completely re-written.
Data sets used by Krause et al. (2022) <doi:10.1101/2022.04.11.487885>. It comprises phenotypic records obtained from the USDA Northern Region Uniform Soybean Tests from 1989 to 2019 for maturity groups II and III. In addition, soil and weather variables are provided for the 591 observed environments (combination of locations and years).
Implementations for two different Bayesian models of differential co-expression. scdeco.cop() fits the bivariate Gaussian copula model from Zichen Ma, Shannon W. Davis, Yen-Yi Ho (2023) <doi:10.1111/biom.13701>, while scdeco.pg() fits the bivariate Poisson-Gamma model from Zhen Yang, Yen-Yi Ho (2022) <doi:10.1111/biom.13457>.
We propose an optimality criterion to determine the required training set, r-score, which is derived directly from Pearson's correlation between the genomic estimated breeding values and phenotypic values of the test set <doi:10.1007/s00122-019-03387-0>. This package provides two main functions to determine a good training set and its size.
This package provides functions to produce, fit and predict from bipartite networks with abundance, trait and phylogenetic information. Its methods are described in detail in Benadi, G., Dormann, C.F., Fruend, J., Stephan, R. & Vazquez, D.P. (2021) Quantitative prediction of interactions in bipartite networks based on traits, abundances, and phylogeny. The American Naturalist, in press.
This is a Hi-C analysis package using a cumulative binomial test to detect interactions between distal genomic loci that have significantly more reads than expected by chance in Hi-C experiments. It takes mapped paired NGS reads as input and gives back the list of significant interactions for a given bin size in the genome.