Calculates D-, Ds-, A-, I- and L-optimal designs for non-linear models, via an implementation of the cocktail algorithm (Yu, 2011, <doi:10.1007/s11222-010-9183-2>). Compares designs via their efficiency, and augments any design with a controlled efficiency. An efficient rounding function has been provided to transform approximate designs to exact designs.
Parse messy geographic coordinates from various character formats to decimal degree numeric values. Parse coordinates into their parts (degree, minutes, seconds); calculate hemisphere from coordinates; pull out individually degrees, minutes, or seconds; add and subtract degrees, minutes, and seconds. C++ code herein originally inspired from code written by Jeffrey D. Bogan, but then completely re-written.
Data sets used by Krause et al. (2022) <doi:10.1101/2022.04.11.487885>. It comprises phenotypic records obtained from the USDA Northern Region Uniform Soybean Tests from 1989 to 2019 for maturity groups II and III. In addition, soil and weather variables are provided for the 591 observed environments (combination of locations and years).
Implementations for two different Bayesian models of differential co-expression. scdeco.cop() fits the bivariate Gaussian copula model from Zichen Ma, Shannon W. Davis, Yen-Yi Ho (2023) <doi:10.1111/biom.13701>, while scdeco.pg() fits the bivariate Poisson-Gamma model from Zhen Yang, Yen-Yi Ho (2022) <doi:10.1111/biom.13457>.
This package provides functions to produce, fit and predict from bipartite networks with abundance, trait and phylogenetic information. Its methods are described in detail in Benadi, G., Dormann, C.F., Fruend, J., Stephan, R. & Vazquez, D.P. (2021) Quantitative prediction of interactions in bipartite networks based on traits, abundances, and phylogeny. The American Naturalist, in press.
We propose an optimality criterion to determine the required training set, r-score, which is derived directly from Pearson's correlation between the genomic estimated breeding values and phenotypic values of the test set <doi:10.1007/s00122-019-03387-0>. This package provides two main functions to determine a good training set and its size.
r128gain is a multi platform command line tool to scan your audio files and tag them with loudness metadata (ReplayGain v2 or Opus R128 gain format), to allow playback of several tracks or albums at a similar loudness level. r128gain can also be used as a Python module from other Python projects to scan and/or tag audio files.
This R package lets you estimate signatures of mutational processes and their activities on mutation count data. Starting from a set of single-nucleotide variants (SNVs), it allows both estimation of the exposure of samples to predefined mutational signatures (including whether the signatures are present at all), and identification of signatures de novo from the mutation counts.
This package provides tools for data importation, recoding, and inspection. There are functions to create new project folders, R code templates, create uniquely named output directories, and to quickly obtain a visual summary for each variable in a data frame. The main feature here is the systematic implementation of the "variable key" framework for data importation and recoding.
Nucleotide conversion sequencing experiments have been developed to add a temporal dimension to RNA-seq and single-cell RNA-seq. Such experiments require specialized tools for primary processing such as GRAND-SLAM, and specialized tools for downstream analyses. grandR provides a comprehensive toolbox for quality control, kinetic modeling, differential gene expression analysis and visualization of such data.
Redshift adjusts the color temperature according to the position of the sun. A different color temperature is set during night and daytime. During twilight and early morning, the color temperature transitions smoothly from night to daytime temperature to allow your eyes to slowly adapt. At night the color temperature should be set to match the lamps in your room.
Made to make your life simpler with packages, by installing and loading a list of packages, whether they are on CRAN, Bioconductor or github. For github, if you do not have the full path, with the maintainer name in it (e.g. "achateigner/topReviGO"), it will be able to load it but not to install it.
Estimates hidden Markov models from the family of Cholesky-decomposed Gaussian hidden Markov models (CDGHMM) under various missingness schemes. This family improves upon estimation of traditional Gaussian HMMs by introducing parsimony, as well as, controlling for dropped out observations and non-random missingness. See Neal, Sochaniwsky and McNicholas (2024) <DOI:10.1007/s11222-024-10462-0>.
This package implements Firth's penalized maximum likelihood bias reduction method for Cox regression which has been shown to provide a solution in case of monotone likelihood (nonconvergence of likelihood function), see Heinze and Schemper (2001) and Heinze and Dunkler (2008). The program fits profile penalized likelihood confidence intervals which were proved to outperform Wald confidence intervals.
Composite likelihood approach is implemented to estimating statistical models for spatial ordinal and proportional data based on Feng et al. (2014) <doi:10.1002/env.2306>. Parameter estimates are identified by maximizing composite log-likelihood functions using the limited memory BFGS optimization algorithm with bounding constraints, while standard errors are obtained by estimating the Godambe information matrix.
An implementation of Dcifer (Distance for complex infections: fast estimation of relatedness), an identity by descent (IBD) based method to calculate genetic relatedness between polyclonal infections from biallelic and multiallelic data. The package includes functions that format and preprocess the data, implement the method, and visualize the results. Gerlovina et al. (2022) <doi:10.1093/genetics/iyac126>.
This package provides a system for combining two diagnostic tests using various approaches that include statistical and machine-learning-based methodologies. These approaches are divided into four groups: linear combination methods, non-linear combination methods, mathematical operators, and machine learning algorithms. See the <https://biotools.erciyes.edu.tr/dtComb/> website for more information, documentation, and examples.
Perform tensor operations using a concise yet expressive syntax inspired by the Python library of the same name. Reshape, rearrange, and combine multidimensional arrays for scientific computing, machine learning, and data analysis. Einops simplifies complex manipulations, making code more maintainable and intuitive. The original implementation is demonstrated in Rogozhnikov (2022) <https://openreview.net/forum?id=oapKSVM2bcj>.
This package provides an interface to the FORCIS database (Chaabane et al. (2024) <doi:10.5281/zenodo.7390791>) on global foraminifera distribution. This package allows to download and to handle FORCIS data. It is part of the FRB-CESAB working group FORCIS. <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/forcis/>.
This package implements a new multiple imputation method that draws imputations from a latent joint multivariate normal model which underpins generally structured data. This model is constructed using a sequence of flexible conditional linear models that enables the resulting procedure to be efficiently implemented on high dimensional datasets in practice. See Robbins (2021) <arXiv:2008.02243>.
This package provides tools for sparse regression modelling with grouped predictors using the group subset selection penalty. Uses coordinate descent and local search algorithms to rapidly deliver near optimal estimates. The group subset penalty can be combined with a group lasso or ridge penalty for added shrinkage. Linear and logistic regression are supported, as are overlapping groups.
This package implements the Hierarchical Incremental GRAdient Descent (HiGrad) algorithm, a first-order algorithm for finding the minimizer of a function in online learning just like stochastic gradient descent (SGD). In addition, this method attaches a confidence interval to assess the uncertainty of its predictions. See Su and Zhu (2018) <arXiv:1802.04876> for details.
Estimating the mean and variance of a covariate for the complier, never-taker and always-taker subpopulation in the context of instrumental variable estimation. This package implements the method described in Marbach and Hangartner (2020) <doi:10.1017/pan.2019.48> and Hangartner, Marbach, Henckel, Maathuis, Kelz and Keele (2021) <doi:10.48550/arXiv.2103.06328>.
The "Manual on Low-flow Estimation and Prediction" (Gustard & Demuth (2009, ISBN:978-92-63-11029-9)), published by the World Meteorological Organisation, gives a comprehensive summary on how to analyse stream flow data focusing on low-flows. This packages provides functions to compute the described statistics and produces plots similar to the ones in the manual.