Short for linear binning', the linbin package provides functions for manipulating, binning, and plotting linearly referenced data. Although developed for data collected on river networks, it can be used with any interval or point data referenced to a 1-dimensional coordinate system. Flexible bin generation and batch processing makes it easy to compute and visualize variables at multiple scales, useful for identifying patterns within and between variables and investigating the influence of scale of observation on data interpretation.
The main function, plot_mm()
, is used for (gg)plotting output from mixture models, including both densities and overlaying mixture weight component curves from the fit models in line with the tidy principles. The package includes several additional functions for added plot customization. Supported model objects include: mixtools', EMCluster', and flexmix', with more from each in active dev. Supported mixture model specifications include mixtures of univariate Gaussians, multivariate Gaussians, Gammas, logistic regressions, linear regressions, and Poisson regressions.
An implementation of a phylogenetic comparative method. It can fit univariate among-species Ornstein-Uhlenbeck models of phenotypic trait evolution, where the trait evolves towards a primary optimum. The optimum can be modelled as a single parameter, as multiple discrete regimes on the phylogenetic tree, and/or with continuous covariates. See also Hansen (1997) <doi:10.2307/2411186>, Butler & King (2004) <doi:10.1086/426002>, Hansen et al. (2008) <doi:10.1111/j.1558-5646.2008.00412.x>.
Kataegis is a localized hypermutation occurring when a region is enriched in somatic SNVs. Kataegis can result from multiple cytosine deaminations catalyzed by the AID/APOBEC family of proteins. This package contains functions to detect kataegis from SNVs in BED format. This package reports two scores per kataegic event, a hypermutation score and an APOBEC mediated kataegic score. Yousif, F. et al.; The Origins and Consequences of Localized and Global Somatic Hypermutation; Biorxiv 2018 <doi:10.1101/287839>.
Simulate complex data from a given directed acyclic graph and information about each individual node. Root nodes are simply sampled from the specified distribution. Child Nodes are simulated according to one of many implemented regressions, such as logistic regression, linear regression, poisson regression and more. Also includes a comprehensive framework for discrete-time simulation, which can generate even more complex longitudinal data. For more details, see Robin Denz, Nina Timmesfeld (2025) <doi:10.48550/arXiv.2506.01498>
.
Generates region-specific Suess and Laws corrections for stable carbon isotope data from marine organisms collected between 1850 and 2023. Version 0.1.6 of SuessR
contains four built-in regions: the Bering Sea ('Bering Sea'), the Aleutian archipelago ('Aleutian Islands'), the Gulf of Alaska ('Gulf of Alaska'), and the subpolar North Atlantic ('Subpolar North Atlantic'). Users can supply their own environmental data for regions currently not built into the package to generate corrections for those regions.
Converts coefficients, standard errors, significance stars, and goodness-of-fit statistics of statistical models into LaTeX
tables or HTML tables/MS Word documents or to nicely formatted screen output for the R console for easy model comparison. A list of several models can be combined in a single table. The output is highly customizable. New model types can be easily implemented. Details can be found in Leifeld (2013), JStatSoft
<doi:10.18637/jss.v055.i08>.).
STARMA (Space-Time Autoregressive Moving Average) models are commonly utilized in modeling and forecasting spatiotemporal time series data. However, the intricate nonlinear dynamics observed in many space-time rainfall patterns often exceed the capabilities of conventional STARMA models. This R package enables the fitting of Time Delay Spatio-Temporal Neural Networks, which are adept at handling such complex nonlinear dynamics efficiently. For detailed methodology, please refer to Saha et al. (2020) <doi:10.1007/s00704-020-03374-2>.
Enables users to build ToxPi
prioritization models and provides functionality within the grid framework for plotting ToxPi
graphs. toxpiR
allows for more customization than the ToxPi
GUI (<https://toxpi.org>) and integration into existing workflows for greater ease-of-use, reproducibility, and transparency. toxpiR
package behaves nearly identically to the GUI; the package documentation includes notes about all differences. The vignettes download example files from <https://github.com/ToxPi/ToxPi-example-files>
.
Helper functions for MASCOTNUM / RT-UQ <https://uq.math.cnrs.fr/> algorithm template, for design of numerical experiments practice: algorithm template parser to support MASCOTNUM specification <https://github.com/MASCOTNUM/algorithms>, ask & tell decoupling injection (inspired by <https://search.r-project.org/CRAN/refmans/sensitivity/html/decoupling.html>) to use "crimped" algorithms (like uniroot()
, optim()
, ...) from outside R, basic template examples: Brent algorithm for 1 dim root finding and L-BFGS-B from base optim()
.
This package provides a simple XML tree parser/generator. It includes functions to read XML files into R objects, get information out of and into nodes, and write R objects back to XML code. It's not as powerful as the XML package and doesn't aim to be, but for simple XML handling it could be useful. It was originally developed for the R GUI and IDE RKWard <https://rkward.kde.org>, to make plugin development easier.
This package is an R implementation for fully unsupervised deconvolution of complex tissues. DebCAM provides basic functions to perform unsupervised deconvolution on mixture expression profiles by CAM and some auxiliary functions to help understand the subpopulation- specific results. It also implements functions to perform supervised deconvolution based on prior knowledge of molecular markers, S matrix or A matrix. Combining molecular markers from CAM and from prior knowledge can achieve semi-supervised deconvolution of mixtures.
This package provides functions, data sets, analyses and examples from the third edition of the book A Handbook of Statistical Analyses Using R (Torsten Hothorn and Brian S. Everitt, Chapman & Hall/CRC, 2014). The first chapter of the book, which is entitled An Introduction to R, is completely included in this package, for all other chapters, a vignette containing all data analyses is available. In addition, Sweave source code for slides of selected chapters is included in this package.
Addressing a central challenge encountered in Mendelian randomization (MR) studies, where MR primarily focuses on discerning the effects of individual exposures on specific outcomes and establishes causal links between them. Using a network-based methodology, the intricacy involving interdependent outcomes due to numerous factors has been tackled through this routine. Based on Ni et al. (2018) <doi:10.1214/17-BA1087>, MR.RGM extends to a broader exploration of the causal landscape by leveraging on network structures and involves the construction of causal graphs that capture interactions between response variables and consequently between responses and instrument variables. The resulting Graph visually represents these causal connections, showing directed edges with effect sizes labeled. MR.RGM facilitates the navigation of various data availability scenarios effectively by accommodating three input formats, i.e., individual-level data and two types of summary-level data. In the process, causal effects, adjacency matrices, and other essential parameters of the complex biological networks, are estimated. Besides, MR.RGM provides uncertainty quantification for specific network structures among response variables.
This package provides classes and functions to work with biological sequences (DNA, RNA and amino acid sequences). Implements S3 infrastructure to work with biological sequences as described in Keck (2020) <doi:10.1111/2041-210X.13490>. Provides a collection of functions to perform biological conversion among classes (transcription, translation) and basic operations on sequences (detection, selection and replacement based on positions or patterns). The package also provides functions to import and export sequences from and to other package formats.
Working with reproducible reports or any other similar projects often require to run the script that builds the output file in a specified way. buildr can help you organize, modify and comfortably run those scripts. The package provides a set of functions that interactively guides you through the process and that are available as RStudio Addin, meaning you can set up the keyboard shortcuts, enabling you to choose and run the desired build script with one keystroke anywhere anytime.
Computes a structural similarity metric (after the style of MS-SSIM for images) for binary and categorical 2D and 3D images. Can be based on accuracy (simple matching), Cohen's kappa, Rand index, adjusted Rand index, Jaccard index, Dice index, normalized mutual information, or adjusted mutual information. In addition, has fast computation of Cohen's kappa, the Rand indices, and the two mutual informations. Implements the methods of Thompson and Maitra (2020) <doi:10.48550/arXiv.2004.09073>
.
Bayesian and ML Emax model fitting, graphics and simulation for clinical dose response. The summary data from the dose response meta-analyses in Thomas, Sweeney, and Somayaji (2014) <doi:10.1080/19466315.2014.924876> and Thomas and Roy (2016) <doi:10.1080/19466315.2016.1256229> Wu, Banerjee, Jin, Menon, Martin, and Heatherington(2017) <doi:10.1177/0962280216684528> are included in the package. The prior distributions for the Bayesian analyses default to the posterior predictive distributions derived from these references.
The D-score summarizes the child's performance on a set of milestones into a single number. The package implements four Rasch model keys to convert milestone scores into a D-score. It provides tools to calculate the D-score and its precision from the child's milestone scores, to convert the D-score into the Development-for-Age Z-score (DAZ) using age-conditional references, and to map milestone names into a generic 9-position item naming convention.
Automatically adding pkg:: to a function, i.e. mutate()
becomes dplyr::mutate()
. It is up to the user to determine which packages should be used explicitly, whether to include base R packages or use the functionality on selected text, a file, or a complete directory. User friendly logging is provided in the RStudio Markers pane. Lives in the spirit of lintr and styler'. Can also be used for checking which packages are actually used in a project.
This package provides a set of tools that enables using OxCal
from within R. OxCal
(<https://c14.arch.ox.ac.uk/oxcal.html>) is a standard archaeological tool intended to provide 14C calibration and analysis of archaeological and environmental chronological information. OxcAAR
allows simple calibration with Oxcal and plotting of the results as well as the execution of sophisticated ('OxCal
') code and the import of the results of bulk analysis and complex Bayesian sequential calibration.
This tool was designed to assess the sensitivity of research findings to omitted variables when estimating causal effects using propensity score (PS) weighting. This tool produces graphics and summary results that will enable a researcher to quantify the impact an omitted variable would have on their results. Burgette et al. (2021) describe the methodology behind the primary function in this package, ov_sim. The method is demonstrated in Griffin et al. (2020) <doi:10.1016/j.jsat.2020.108075>.
Loads and processes huge text corpora processed with the sally toolbox (<http://www.mlsec.org/sally/>). sally acts as a very fast preprocessor which splits the text files into tokens or n-grams. These output files can then be read with the PRISMA package which applies testing-based token selection and has some replicate-aware, highly tuned non-negative matrix factorization and principal component analysis implementation which allows the processing of very big data sets even on desktop machines.
This package provides a flexible framework combining variable screening and random projection techniques for fitting ensembles of predictive generalized linear models to high-dimensional data. Designed for extensibility, the package implements key techniques as S3 classes with user-friendly constructors, enabling easy integration and development of new procedures for high-dimensional applications. For more details see Parzer et al (2024a) <doi:10.48550/arXiv.2312.00130>
and Parzer et al (2024b) <doi:10.48550/arXiv.2410.00971>
.