Forest data quality is a package containing nine methods of analysis for forest databases, from databases containing inventory data and growth models, the focus of the analyzes is related to the quality of the data present in the database with a focus on consistency , punctuality and completeness of data.
Simplifies the process of importing and managing input-output matrices from Microsoft Excel into R, and provides a suite of functions for analysis. It leverages the R6 class for clean, memory-efficient object-oriented programming. Furthermore, all linear algebra computations are implemented in Rust to achieve highly optimized performance.
This package provides access to Uber's H3 geospatial indexing system via h3lib <https://CRAN.R-project.org/package=h3lib>. h3r is designed to mimic the H3 Application Programming Interface (API) <https://h3geo.org/docs/api/indexing/>, so that any function in the API is also available in h3r'.
The format KVH is a lightweight format that can be read/written both by humans and machines. It can be useful in situations where XML or alike formats seem to be an overkill. We provide an ability to parse KVH files in R pretty fast due to Rcpp use.
Routines to perform estimation and inference under the multivariate t-distribution <doi:10.1007/s10182-022-00468-2>. Currently, the following methodologies are implemented: multivariate mean and covariance estimation, hypothesis testing about equicorrelation and homogeneity of variances, the Wilson-Hilferty transformation, QQ-plots with envelopes and random variate generation.
Access the United States National Provider Identifier Registry API <https://npiregistry.cms.hhs.gov/api/>. Obtain and transform administrative data linked to a specific individual or organizational healthcare provider, or perform advanced searches based on provider name, location, type of service, credentials, and other attributes exposed by the API.
An implementation of network-based statistics in R using mixed effects models. Theoretical background for Network-Based Statistics can be found in Zalesky et al. (2010) <doi:10.1016/j.neuroimage.2010.06.041>. For Mixed Effects Models check the R package <https://CRAN.R-project.org/package=nlme>.
This package provides a collection of scripts and data files for the statistics text: "Process Improvement using Data" <https://learnche.org/pid/> and the online course "Experimentation for Improvement" found on Coursera. The package contains code for designed experiments, data sets and other convenience functions used in the book.
The new QOI file format offers a very simple but efficient image compression algorithm. This package provides an easy and simple way to read, write and display bitmap images stored in the QOI (Quite Ok Image) format. It can read and write both files and in-memory raw vectors.
This package provides methods focused in performing the OSGB36/ETRS89 transformation (Great Britain and the Isle of Man only) by using the Ordnance Survey's OSTN15/OSGM15 transformation model. Calculation of distances and areas from sets of points defined in any of the supported Coordinated Systems is also available.
An extensible framework for developing species distribution models using individual and community-based approaches, generate ensembles of models, evaluate the models, and predict species potential distributions in space and time. For more information, please check the following paper: Naimi, B., Araujo, M.B. (2016) <doi:10.1111/ecog.01881>.
Various tools for semantic vector spaces, such as correspondence analysis (simple, multiple and discriminant), latent semantic analysis, probabilistic latent semantic analysis, non-negative matrix factorization, latent class analysis, EM clustering, logratio analysis and log-multiplicative (association) analysis. Furthermore, there are specialized distance measures, plotting functions and some helper functions.
The Stochastic Dominance (SD) is the classical way of comparing two random prospects, using their distribution functions. Almost Stochastic Dominance (ASD) has also been developed to cover the SD failures due to the extreme utility functions. This package focuses on classical and heuristic methods for testing the first and second SD and ASD methods given the probability mass function (PMF) of the random prospects. The goal is to apply these methods easily, efficiently, and effectively on real-world datasets. For more details see Hanoch and Levy (1969) <doi:10.2307/2296431>, Leshno and Levy (2002) <doi:10.1287/mnsc.48.8.1074.169>, and Tzeng et al. (2012) <doi:10.1287/mnsc.1120.1616>.
This package performs augmented backward elimination and checks the stability of the obtained model. Augmented backward elimination combines significance or information based criteria with the change in estimate to either select the optimal model for prediction purposes or to serve as a tool to obtain a practically sound, highly interpretable model.
Transforms focal observations data, where different types of social interactions can be recorded by multiple observers, into asymmetric data matrices. Each cell in these matrices provides counts on the number of times a specific type of social interaction was initiated by the row subject and directed to the column subject.
Developing general equilibrium models, computing general equilibrium and simulating economic dynamics with structural dynamic models in LI (2019, ISBN: 9787521804225) "General Equilibrium and Structural Dynamics: Perspectives of New Structural Economics. Beijing: Economic Science Press". When developing complex general equilibrium models, GE package should be used in addition to this package.
This package provides an operator for assigning nested components of a list to names via a concise pattern matching syntax. This is especially convenient for assigning individual names to the multiple values that a function may return in the form of a list, and for extracting deeply nested list components.
Get Drug information from given differential expression profile. The package search for the bioactive compounds from reference databases such as LINCS containing the genome-wide gene expression signature (GES) from tens of thousands of drug and genetic perturbations (Subramanian et al. (2017) <DOI:10.1016/j.cell.2017.10.049>).
The data consist of a set of variables measured on several groups of individuals. To each group is associated an estimated probability density function. The package provides tools to create or manage such data and functional methods (principal component analysis, multidimensional scaling, cluster analysis, discriminant analysis...) for such probability densities.
This package contains the Global Charcoal database data. Data include charcoal series (age, depth, charcoal quantity, associated units and methods) and information on sedimentary sites (localisation, depositional environment, biome, etc.) as well as publications informations. Since 4.0.0 the GCD mirrors the online SQL database at <http://paleofire.org>.
This package provides a toolkit with functions to fit, plot, summarize, and apply Generalized Dissimilarity Models. Mokany K, Ware C, Woolley SNC, Ferrier S, Fitzpatrick MC (2022) <doi:10.1111/geb.13459> Ferrier S, Manion G, Elith J, Richardson K (2007) <doi:10.1111/j.1472-4642.2007.00341.x>.
This package provides tools for computing HUM (Hypervolume Under the Manifold) value to estimate features ability to discriminate the class labels, visualizing the ROC curve for two or three class labels (Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn (2014) <doi:10.1093/bioinformatics/btu086>).
This package performs a Kaplan-Meier multiple imputation to recover the missing potential censoring information from competing risks events, so that standard right-censored methods could be applied to the imputed data sets to perform analyses of the cumulative incidence functions (Allignol and Beyersmann, 2010 <doi:10.1093/biostatistics/kxq018>).
This package provides a copula-based measure for quantifying asymmetry in dependence and associations. Documentation and theory about qad is provided by the paper by Junker, Griessenberger & Trutschnig (2021, <doi:10.1016/j.csda.2020.107058>), and the paper by Trutschnig (2011, <doi:10.1016/j.jmaa.2011.06.013>).