Allows the user to manage easily R packages removal and installation. It offers many functions to display installed packages according to specific dates and removes them if needed. The user is always prompted when running the removal functions in order to confirm the required action. It also provides functions that will install Github starred R packages whether available on CRAN or not.
Compile inline C code and easily call with automatically generated wrapper functions. By allowing user-defined headers and compilation flags (preprocessor, compiler and linking flags) the user can configure optimization options and linking to third party libraries. Multiple functions may be defined in a single block of code - which may be defined in a string or a path to a source file.
Model-free selection of covariates under unconfoundedness for situations where the parameter of interest is an average causal effect. This package is based on model-free backward elimination algorithms proposed in de Luna, Waernbaum and Richardson (2011). Marginal co-ordinate hypothesis testing is used in situations where all covariates are continuous while kernel-based smoothing appropriate for mixed data is used otherwise.
This package provides a function to query and extract data from the US Energy Information Administration ('EIA') API V2 <https://www.eia.gov/opendata/>. The EIA API provides a variety of information, in a time series format, about the energy sector in the US. The API is open, free, and requires an access key and registration at <https://www.eia.gov/opendata/>.
Systematic fit of hundreds of theoretical univariate distributions to empirical data via maximum likelihood estimation. Fits are reported and summarized by a data.frame, a csv file or a shiny app (here with additional features like visual representation of fits). All output formats provide assessment of goodness-of-fit by the following methods: Kolmogorov-Smirnov test, Shapiro-Wilks test, Anderson-Darling test.
Aligning multiple visualisations by utilising generalised orthogonal Procrustes analysis (GPA) before combining coordinates into a single biplot display as described in Nienkemper-Swanepoel, le Roux and Lubbe (2023)<doi:10.1080/03610918.2021.1914089>. This is mainly suitable to combine visualisations constructed from multiple imputations, however, it can be generalised to combine variations of visualisations from the same datasets (i.e. resamples).
Using overlap grouped-lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families. See <doi:10.48550/arXiv.1506.03850> for more details.
GitHub apps provide a powerful way to manage fine grained programmatic access to specific git repositories, without having to create dummy users, and which are safer than a personal access token for automated tasks. This package extends the gh package to let you authenticate and interact with GitHub <https://docs.github.com/en/rest/overview> in R as an app.
It allows running gretl (<http://gretl.sourceforge.net/index.html>) program from R, R Markdown and Quarto. gretl ('Gnu Regression, Econometrics', and Time-series Library) is a statistical software for Econometric analysis. This package does not only integrate gretl and R but also serves as a gretl Knit-Engine for knitr package. Write all your gretl commands in R', R Markdown chunk.
Make efficient Rust implementations of graph adjustment identification distances available in R. These distances (based on ancestor, optimal, and parent adjustment) count how often the respective adjustment identification strategy leads to causal inferences that are incorrect relative to a ground-truth graph when applied to a candidate graph instead. See also Henckel, Würtzen, Weichwald (2024) <doi:10.48550/arXiv.2402.08616>.
Simulation, estimation and testing for geopolitical volatility (GEOVOL) based on the global common volatility model of Engle and Campos-Martins (2023) <doi:10.1016/j.jfineco.2022.09.009>. GEOVOL is modelled as a latent multiplicative volatility factor with heterogeneous factor loadings. Estimation is carried out as a maximization-maximization procedure, where GEOVOL and the GEOVOL loadings are estimated iteratively until convergence.
Computes and decomposes Gini, Bonferroni and Zenga 2007 point and synthetic concentration indexes. Decompositions are intended: by sources, by subpopulations and by sources and subpopulations jointly. References, Zenga M. M.(2007) <doi:10.1400/209575> Zenga M. (2015) <doi:10.1400/246627> Zenga M., Valli I. (2017) <doi:10.26350/999999_000005> Zenga M., Valli I. (2018) <doi:10.26350/999999_000011>.
SQL back-end to dplyr for Apache Impala, the massively parallel processing query engine for Apache Hadoop'. Impala enables low-latency SQL queries on data stored in the Hadoop Distributed File System (HDFS)', Apache HBase', Apache Kudu', Amazon Simple Storage Service (S3)', Microsoft Azure Data Lake Store (ADLS)', and Dell EMC Isilon'. See <https://impala.apache.org> for more information about Impala.
This package provides a key-value store data structure. The keys are integers and the values can be any R object. This is like a list but indexed by a set of integers, not necessarily contiguous and possibly negative. The implementation uses a R6 class. These containers are not faster than lists but their usage can be more convenient for certain situations.
The goal of LCMSQA is to make it easy to check the quality of liquid chromatograph/mass spectrometry (LC/MS) experiments using a shiny application. This package provides interactive data visualizations for quality control (QC) samples, including total ion current chromatogram (TIC), base peak chromatogram (BPC), mass spectrum, extracted ion chromatogram (XIC), and feature detection results from internal standards or known metabolites.
This package provides a set of utility functions for analysing and modelling data from continuous report short-term memory experiments using either the 2-component mixture model of Zhang and Luck (2008) <doi:10.1038/nature06860> or the 3-component mixture model of Bays et al. (2009) <doi:10.1167/9.10.7>. Users are also able to simulate from these models.
It contains the function to apply MARMoT balancing technique discussed in: Silan, Boccuzzo, Arpino (2021) <DOI:10.1002/sim.9192>, Silan, Belloni, Boccuzzo, (2023) <DOI:10.1007/s10260-023-00695-0>; furthermore it contains a function for computing the Deloof's approximation of the average rank (and also a parallelized version) and a function to compute the Absolute Standardized Bias.
This package provides a HTML widget rendering the Monaco editor. The Monaco editor is the code editor which powers VS Code'. It is particularly well developed for JavaScript'. In addition to the built-in features of the Monaco editor, the widget allows to prettify multiple languages, to view the HTML rendering of Markdown code, and to view and resize SVG images.
Inbreeding-purging analysis of pedigreed populations, including the computation of the inbreeding coefficient, partial, ancestral and purged inbreeding coefficients, and measures of the opportunity of purging related to the individual reduction of inbreeding load. In addition, functions to calculate the effective population size and other parameters relevant to population genetics are included. See López-Cortegano E. (2021) <doi:10.1093/bioinformatics/btab599>.
This package provides a number of functions to simplify and automate the scoring, comparison, and evaluation of different ways of creating composites of data. It is particularly aimed at facilitating the creation of physiological composites of metabolic syndrome symptom score (MetSSS) and allostatic load (AL). Provides a wrapper to calculate the MetSSS on new data using the Healthy Hearts formula.
Supports analysis of aerobiological data. Available features include determination of pollen season limits, replacement of outliers (Kasprzyk and Walanus (2014) <doi:10.1007/s10453-014-9332-8>), calculation of growing degree days (Baskerville and Emin (1969) <doi:10.2307/1933912>), and determination of the base temperature for growing degree days (Yang et al. (1995) <doi:10.1016/0168-1923(94)02185-M).
This package implements several functions for the analysis of semantic networks including different network estimation algorithms, partial node bootstrapping (Kenett, Anaki, & Faust, 2014 <doi:10.3389/fnhum.2014.00407>), random walk simulation (Kenett & Austerweil, 2016 <http://alab.psych.wisc.edu/papers/files/Kenett16CreativityRW.pdf>), and a function to compute global network measures. Significance tests and plotting features are also implemented.
This package provides a toolkit for Partially Observed Markov Decision Processes (POMDP). Provides bindings to C++ libraries implementing the algorithm SARSOP (Successive Approximations of the Reachable Space under Optimal Policies) and described in Kurniawati et al (2008), <doi:10.15607/RSS.2008.IV.009>. This package also provides a high-level interface for generating, solving and simulating POMDP problems and their solutions.
This package provides tools for analyzing tail dependence in any sample or in particular theoretical models. The package uses only theoretical and non parametric methods, without inference. The primary goals of the package are to provide: (a)symmetric multivariate extreme value models in any dimension; theoretical and empirical indices to order tail dependence; theoretical and empirical graphical methods to visualize tail dependence.