Estimate vaccine efficacy (VE) using immunogenicity data. The inclusion of immunogenicity data in regression models can increase precision in VE. The methods are described in the publications "Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression" and "Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models" by Julie Dudasova, Zdenek Valenta, and Jeffrey R. Sachs (2024).
Hamiltonian Monte Carlo for both continuous and discontinuous posterior distributions with a customizable trajectory length termination criterion. See Nishimura et al. (2020) <doi:10.1093/biomet/asz083> for the original Discontinuous Hamiltonian Monte Carlo; Hoffman et al. (2014) <doi:10.48550/arXiv.1111.4246> and Betancourt (2016) <doi:10.48550/arXiv.1601.00225> for the definition of possible Hamiltonian Monte Carlo termination criteria.
This package provides a comprehensive suite of utilities for univariate continuous probability distributions and reliability models. Includes functions to compute the probability density, cumulative distribution, quantile, reliability, and hazard functions, along with random variate generation. Also offers diagnostic and model assessment tools such as Quantile-Quantile (Q-Q) and Probability-Probability (P-P) plots, the Kolmogorov-Smirnov goodness-of-fit test, and model selection criteria including the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Currently implements the following distributions: Burr X, Chen, Exponential Extension, Exponentiated Logistic, Exponentiated Weibull, Exponential Power, Flexible Weibull, Generalized Exponential, Gompertz, Generalized Power Weibull, Gumbel, Inverse Generalized Exponential, Linear Failure Rate, Log-Gamma, Logistic-Exponential, Logistic-Rayleigh, Log-log, Marshall-Olkin Extended Exponential, Marshall-Olkin Extended Weibull, and Weibull Extension distributions. Serves as a valuable resource for teaching and research in probability theory, reliability analysis, and applied statistical modeling.
ASURAT is a software for single-cell data analysis. Using ASURAT, one can simultaneously perform unsupervised clustering and biological interpretation in terms of cell type, disease, biological process, and signaling pathway activity. Inputting a single-cell RNA-seq data and knowledge-based databases, such as Cell Ontology, Gene Ontology, KEGG, etc., ASURAT transforms gene expression tables into original multivariate tables, termed sign-by-sample matrices (SSMs).
Signal-to-Noise applied to Gene Expression Experiments. Signal-to-noise ratios can be used as a proxy for quality of gene expression studies and samples. The SNRs can be calculated on any gene expression data set as long as gene IDs are available, no access to the raw data files is necessary. This allows to flag problematic studies and samples in any public data set.
scider is an user-friendly R package providing functions to model the global density of cells in a slide of spatial transcriptomics data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. After modelling density, the package allows for serveral downstream analysis, including colocalization analysis, boundary detection analysis and differential density analysis.
Various mRNA sequencing library preparation methods generate sequencing reads specifically from the transcript ends. Analyses that focus on quantification of isoform usage from such data can be aided by using truncated versions of transcriptome annotations, both at the alignment or pseudo-alignment stage, as well as in downstream analysis. This package implements some convenience methods for readily generating such truncated annotations and their corresponding sequences.
Developed for use by those tasked with the routine detection, characterisation and quantification of discrete changes in air quality time-series, such as identifying the impacts of air quality policy interventions. The main functions use signal isolation then break-point/segment (BP/S) methods based on strucchange and segmented methods to detect and quantify change events (Ropkins & Tate, 2021, <doi:10.1016/j.scitotenv.2020.142374>).
This package provides a collection of tools that support data splitting, predictive modeling, and model evaluation. A typical function is to split a dataset into a training dataset and a test dataset. Then compare the data distribution of the two datasets. Another feature is to support the development of predictive models and to compare the performance of several predictive models, helping to select the best model.
Provided are Computational methods for Immune Cell-type Subsets, including:(1) DCQ (Digital Cell Quantifier) to infer global dynamic changes in immune cell quantities within a complex tissue; and (2) VoCAL (Variation of Cell-type Abundance Loci) a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune-cell types, and then uses these quantitative traits to uncover the underlying DNA loci.
Realize three approaches for Gene-Environment interaction analysis. All of them adopt Sparse Group Minimax Concave Penalty to identify important G variables and G-E interactions, and simultaneously respect the hierarchy between main G and G-E interaction effects. All the three approaches are available for Linear, Logistic, and Poisson regression. Also realize to mine and construct prior information for G variables and G-E interactions.
General purpose TIFF file I/O for R users. Currently the only such package with read and write support for TIFF files with floating point (real-numbered) pixels, and the only package that can correctly import TIFF files that were saved from ImageJ and write TIFF files than can be correctly read by ImageJ <https://imagej.net/ij/>. Also supports text image I/O.
Implementation of two multi-criteria decision making methods (MCDM): Intuitionistic Fuzzy Synthetic Measure (IFSM) and Intuitionistic Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (IFTOPSIS) for intuitionistic fuzzy data sets for multi-criteria decision making problems. References describing the methods: JefmaÅ ski (2020) <doi:10.1007/978-3-030-52348-0_4>; JefmaÅ ski, Roszkowska, Kusterka-JefmaÅ ska (2021) <doi:10.3390/e23121636>.
Linear Liu regression coefficient's estimation and testing with different Liu related measures such as MSE, R-squared etc. REFERENCES i. Akdeniz and Kaciranlar (1995) <doi:10.1080/03610929508831585> ii. Druilhet and Mom (2008) <doi:10.1016/j.jmva.2006.06.011> iii. Imdadullah, Aslam, and Saima (2017) iv. Liu (1993) <doi:10.1080/03610929308831027> v. Liu (2001) <doi:10.1016/j.jspi.2010.05.030>.
This package provides tools for creating and using lenses to simplify data manipulation. Lenses are composable getter/setter pairs for working with data in a purely functional way. Inspired by the Haskell library lens (Kmett, 2012) <https://hackage.haskell.org/package/lens>. For a fairly comprehensive (and highly technical) history of lenses please see the lens wiki <https://github.com/ekmett/lens/wiki/History-of-Lenses>.
This package provides functions for fitting various models to capture-recapture data including mixed-effects Cormack-Jolly-Seber(CJS) and multistate models and the multi-variate state model structure for survival estimation and POPAN structured Jolly-Seber models for abundance estimation. There are also Hidden Markov model (HMM) implementations of CJS and multistate models with and without state uncertainty and a simulation capability for HMM models.
This package provides methods for obtaining improved estimates of non-linear cross-validated risks are obtained using targeted minimum loss-based estimation, estimating equations, and one-step estimation (Benkeser, Petersen, van der Laan (2019), <doi:10.1080/01621459.2019.1668794>). Cross-validated area under the receiver operating characteristics curve (LeDell, Petersen, van der Laan (2015), <doi:10.1214/15-EJS1035>) and other metrics are included.
The online principal component regression method can process the online data set. OPCreg implements the online principal component regression method, which is specifically designed to process online datasets efficiently. This method is particularly useful for handling large-scale, streaming data where traditional batch processing methods may be computationally infeasible.The philosophy of the package is described in Guo (2025) <doi:10.1016/j.physa.2024.130308>.
This package provides a client that grants access to the power of the ohsome API from R. It lets you analyze the rich data source of the OpenStreetMap (OSM) history. You can retrieve the geometry of OSM data at specific points in time, and you can get aggregated statistics on the evolution of OSM elements and specify your own temporal, spatial and/or thematic filters.
This package provides functions for unconditional and conditional quantiles. These include methods for transformation-based quantile regression, quantile-based measures of location, scale and shape, methods for quantiles of discrete variables, quantile-based multiple imputation, restricted quantile regression, directional quantile classification, and quantile ratio regression. A vignette is given in Geraci (2016, The R Journal) <doi:10.32614/RJ-2016-037> and included in the package.
Semiparametric and parametric estimation of INAR models including a finite sample refinement (Faymonville et al. (2022) <doi:10.1007/s10260-022-00655-0>) for the semiparametric setting introduced in Drost et al. (2009) <doi:10.1111/j.1467-9868.2008.00687.x>, different procedures to bootstrap INAR data (Jentsch, C. and Weià , C.H. (2017) <doi:10.3150/18-BEJ1057>) and flexible simulation of INAR data.
Carries out analyses of two-way tables with one observation per cell, together with graphical displays for an additive fit and a diagnostic plot for removable non-additivity via a power transformation of the response. It implements Tukey's Exploratory Data Analysis (1973) <ISBN: 978-0201076165> methods, including a 1-degree-of-freedom test for row*column non-additivity', linear in the row and column effects.
Some tools for cleaning up messy Excel files to be suitable for R. People who have been working with Excel for years built more or less complicated sheets with names, characters, formats that are not homogeneous. To be able to use them in R nowadays, we built a set of functions that will avoid the majority of importation problems and keep all the data at best.
DegCre generates associations between differentially expressed genes (DEGs) and cis-regulatory elements (CREs) based on non-parametric concordance between differential data. The user provides GRanges of DEG TSS and CRE regions with differential p-value and optionally log-fold changes and DegCre returns an annotated Hits object with associations and their calculated probabilities. Additionally, the package provides functionality for visualization and conversion to other formats.