Model-free selection of covariates under unconfoundedness for situations where the parameter of interest is an average causal effect. This package is based on model-free backward elimination algorithms proposed in de Luna, Waernbaum and Richardson (2011). Marginal co-ordinate hypothesis testing is used in situations where all covariates are continuous while kernel-based smoothing appropriate for mixed data is used otherwise.
This package provides a function to query and extract data from the US Energy Information Administration ('EIA') API V2 <https://www.eia.gov/opendata/>. The EIA API provides a variety of information, in a time series format, about the energy sector in the US. The API is open, free, and requires an access key and registration at <https://www.eia.gov/opendata/>.
Systematic fit of hundreds of theoretical univariate distributions to empirical data via maximum likelihood estimation. Fits are reported and summarized by a data.frame, a csv file or a shiny app (here with additional features like visual representation of fits). All output formats provide assessment of goodness-of-fit by the following methods: Kolmogorov-Smirnov test, Shapiro-Wilks test, Anderson-Darling test.
It allows running gretl (<http://gretl.sourceforge.net/index.html>) program from R, R Markdown and Quarto. gretl ('Gnu Regression, Econometrics', and Time-series Library) is a statistical software for Econometric analysis. This package does not only integrate gretl and R but also serves as a gretl Knit-Engine for knitr package. Write all your gretl commands in R', R Markdown chunk.
GitHub
apps provide a powerful way to manage fine grained programmatic access to specific git repositories, without having to create dummy users, and which are safer than a personal access token for automated tasks. This package extends the gh package to let you authenticate and interact with GitHub
<https://docs.github.com/en/rest/overview> in R as an app.
Using overlap grouped-lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families. See <doi:10.48550/arXiv.1506.03850>
for more details.
SQL back-end to dplyr for Apache Impala, the massively parallel processing query engine for Apache Hadoop'. Impala enables low-latency SQL queries on data stored in the Hadoop Distributed File System (HDFS)', Apache HBase', Apache Kudu', Amazon Simple Storage Service (S3)', Microsoft Azure Data Lake Store (ADLS)', and Dell EMC Isilon'. See <https://impala.apache.org> for more information about Impala.
Computes and decomposes Gini, Bonferroni and Zenga 2007 point and synthetic concentration indexes. Decompositions are intended: by sources, by subpopulations and by sources and subpopulations jointly. References, Zenga M. M.(2007) <doi:10.1400/209575> Zenga M. (2015) <doi:10.1400/246627> Zenga M., Valli I. (2017) <doi:10.26350/999999_000005> Zenga M., Valli I. (2018) <doi:10.26350/999999_000011>.
This package provides a key-value store data structure. The keys are integers and the values can be any R object. This is like a list but indexed by a set of integers, not necessarily contiguous and possibly negative. The implementation uses a R6 class. These containers are not faster than lists but their usage can be more convenient for certain situations.
The goal of LCMSQA is to make it easy to check the quality of liquid chromatograph/mass spectrometry (LC/MS) experiments using a shiny application. This package provides interactive data visualizations for quality control (QC) samples, including total ion current chromatogram (TIC), base peak chromatogram (BPC), mass spectrum, extracted ion chromatogram (XIC), and feature detection results from internal standards or known metabolites.
It contains the function to apply MARMoT
balancing technique discussed in: Silan, Boccuzzo, Arpino (2021) <DOI:10.1002/sim.9192>, Silan, Belloni, Boccuzzo, (2023) <DOI:10.1007/s10260-023-00695-0>; furthermore it contains a function for computing the Deloof's approximation of the average rank (and also a parallelized version) and a function to compute the Absolute Standardized Bias.
This package provides a set of utility functions for analysing and modelling data from continuous report short-term memory experiments using either the 2-component mixture model of Zhang and Luck (2008) <doi:10.1038/nature06860> or the 3-component mixture model of Bays et al. (2009) <doi:10.1167/9.10.7>. Users are also able to simulate from these models.
This package provides a HTML widget rendering the Monaco editor. The Monaco editor is the code editor which powers VS Code'. It is particularly well developed for JavaScript
'. In addition to the built-in features of the Monaco editor, the widget allows to prettify multiple languages, to view the HTML rendering of Markdown code, and to view and resize SVG images.
This package provides a number of functions to simplify and automate the scoring, comparison, and evaluation of different ways of creating composites of data. It is particularly aimed at facilitating the creation of physiological composites of metabolic syndrome symptom score (MetSSS
) and allostatic load (AL). Provides a wrapper to calculate the MetSSS
on new data using the Healthy Hearts formula.
Inbreeding-purging analysis of pedigreed populations, including the computation of the inbreeding coefficient, partial, ancestral and purged inbreeding coefficients, and measures of the opportunity of purging related to the individual reduction of inbreeding load. In addition, functions to calculate the effective population size and other parameters relevant to population genetics are included. See López-Cortegano E. (2021) <doi:10.1093/bioinformatics/btab599>.
Supports analysis of aerobiological data. Available features include determination of pollen season limits, replacement of outliers (Kasprzyk and Walanus (2014) <doi:10.1007/s10453-014-9332-8>), calculation of growing degree days (Baskerville and Emin (1969) <doi:10.2307/1933912>), and determination of the base temperature for growing degree days (Yang et al. (1995) <doi:10.1016/0168-1923(94)02185-M).
This package provides a toolkit for Partially Observed Markov Decision Processes (POMDP). Provides bindings to C++ libraries implementing the algorithm SARSOP (Successive Approximations of the Reachable Space under Optimal Policies) and described in Kurniawati et al (2008), <doi:10.15607/RSS.2008.IV.009>. This package also provides a high-level interface for generating, solving and simulating POMDP problems and their solutions.
This package implements statistical inference for systems of ordinary differential equations, that uses the integral-matching criterion and takes advantage of the separability of parameters, in order to obtain initial parameter estimates for nonlinear least squares optimization. Dattner & Yaari (2018) <arXiv:1807.04202>
. Dattner et al. (2017) <doi:10.1098/rsif.2016.0525>. Dattner & Klaassen (2015) <doi:10.1214/15-EJS1053>.
This package implements several functions for the analysis of semantic networks including different network estimation algorithms, partial node bootstrapping (Kenett, Anaki, & Faust, 2014 <doi:10.3389/fnhum.2014.00407>), random walk simulation (Kenett & Austerweil, 2016 <http://alab.psych.wisc.edu/papers/files/Kenett16CreativityRW.pdf>
), and a function to compute global network measures. Significance tests and plotting features are also implemented.
This package provides tools for analyzing tail dependence in any sample or in particular theoretical models. The package uses only theoretical and non parametric methods, without inference. The primary goals of the package are to provide: (a)symmetric multivariate extreme value models in any dimension; theoretical and empirical indices to order tail dependence; theoretical and empirical graphical methods to visualize tail dependence.
Simulate complex data from a given directed acyclic graph and information about each individual node. Root nodes are simply sampled from the specified distribution. Child Nodes are simulated according to one of many implemented regressions, such as logistic regression, linear regression, poisson regression and more. Also includes a comprehensive framework for discrete-time simulation, which can generate even more complex longitudinal data.
Palettes generated from Tintin covers. There is one palette per cover, with a total of 24 palettes of 5 colours each. Includes functions to interpolate colors in order to create more colors based on the provided palettes.The data is based on Cyr, et al. (2004) <doi:10.1503/cmaj.1041405> and Wikipedia <https://en.wikipedia.org/wiki/The_Adventures_of_Tintin>.
Multinomial (inverse) regression inference for text documents and associated attributes. For details see: Taddy (2013 JASA) Multinomial Inverse Regression for Text Analysis <arXiv:1012.2098>
and Taddy (2015, AoAS
), Distributed Multinomial Regression, <arXiv:1311.6139>
. A minimalist partial least squares routine is also included. Note that the topic modeling capability of earlier textir is now a separate package, maptpx'.
Handling and manipulation polygons, coordinates, and other geographical objects. The tools include: polygon areas, barycentric and trilinear coordinates (Hormann and Floater, 2006, <doi:10.1145/1183287.1183295>), convex hull for polygons (Graham and Yao, 1983, <doi:10.1016/0196-6774(83)90013-5>), polygon triangulation (Toussaint, 1991, <doi:10.1007/BF01905693>), great circle and geodesic distances, Hausdorff distance, and reduced major axis.