Estimate vaccine efficacy (VE) using immunogenicity data. The inclusion of immunogenicity data in regression models can increase precision in VE. The methods are described in the publications "Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression" and "Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models" by Julie Dudasova, Zdenek Valenta, and Jeffrey R. Sachs (2024).
comapr detects crossover intervals for single gametes from their haplotype states sequences and stores the crossovers in GRanges object. The genetic distances can then be calculated via the mapping functions using estimated crossover rates for maker intervals. Visualisation functions for plotting interval-based genetic map or cumulative genetic distances are implemented, which help reveal the variation of crossovers landscapes across the genome and across individuals.
satuRn provides a framework for performing differential transcript usage analyses. The package consists of three main functions. The first function, fitDTU
, fits quasi-binomial generalized linear models that model transcript usage in different groups of interest. The second function, testDTU
, tests for differential usage of transcripts between groups of interest. Finally, plotDTU
visualizes the usage profiles of transcripts in groups of interest.
This package is used to detect combination of genomic coordinates falling within a user defined window size along with user defined overlap between identified neighboring clusters. It can be used for genomic data where the clusters are built on a specific chromosome or specific strand. Clustering can be performed with a "greedy" option allowing thus the presence of additional sites within the allowed window size.
This package provides support for numerical and graphical summaries of RNA-Seq genomic read data. Provided within-lane normalization procedures to adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression, global-scaling, and full-quantile normalization. Between-lane normalization procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and full-quantile normalization.
This package provides a graphics device for R that is accessible via network protocols. This package was created to make it easier to embed live R graphics in integrated development environments and other applications. The included HTML/JavaScript
client (plot viewer) aims to provide a better overall user experience when dealing with R graphics. The device asynchronously serves graphics via HTTP and WebSockets
'.
An R implementation for the Strain Elevation and Tension embedding algorithm from Bourne (2020) <doi:10.1007/s41109-020-00329-4>. The package embeds graphs and networks using the Strain Elevation and Tension embedding (SETSe) algorithm. SETSe represents the network as a physical system, where edges are elastic, and nodes exert a force either up or down based on node features. SETSe positions the nodes vertically such that the tension in the edges of a node is equal and opposite to the force it exerts for all nodes in the network. The resultant structure can then be analysed by looking at the node elevation and the edge strain and tension. This algorithm works on weighted and unweighted networks as well as networks with or without explicit node features. Edge elasticity can be created from existing edge weights or kept as a constant.
The R Analytic Tool To Learn Easily (Rattle) provides a collection of utilities functions for the data scientist. A Gnome (RGtk2) based graphical interface is included with the aim to provide a simple and intuitive introduction to R for data science, allowing a user to quickly load data from a CSV file (or via ODBC), transform and explore the data, build and evaluate models, and export models as PMML (predictive modelling markup language) or as scores. A key aspect of the GUI is that all R commands are logged and commented through the log tab. This can be saved as a standalone R script file and as an aid for the user to learn R or to copy-and-paste directly into R itself. Note that RGtk2 and cairoDevice
have been archived on CRAN. See <https://rattle.togaware.com> for installation instructions.
This package provides a collection of tools that support data splitting, predictive modeling, and model evaluation. A typical function is to split a dataset into a training dataset and a test dataset. Then compare the data distribution of the two datasets. Another feature is to support the development of predictive models and to compare the performance of several predictive models, helping to select the best model.
Developed for use by those tasked with the routine detection, characterisation and quantification of discrete changes in air quality time-series, such as identifying the impacts of air quality policy interventions. The main functions use signal isolation then break-point/segment (BP/S) methods based on strucchange and segmented methods to detect and quantify change events (Ropkins & Tate, 2021, <doi:10.1016/j.scitotenv.2020.142374>).
This package provides functions which perform Bayesian estimations of a covariance matrix for multivariate normal data. Assumes that the covariance matrix is sparse or band matrix and positive-definite. This software has been developed using funding supported by Basic Science Research Program through the National Research Foundation of Korea ('NRF') funded by the Ministry of Education ('RS-2023-00211979', NRF-2022R1A5A7033499', NRF-2020R1A4A1018207 and NRF-2020R1C1C1A01013338').
Provided are Computational methods for Immune Cell-type Subsets, including:(1) DCQ (Digital Cell Quantifier) to infer global dynamic changes in immune cell quantities within a complex tissue; and (2) VoCAL
(Variation of Cell-type Abundance Loci) a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune-cell types, and then uses these quantitative traits to uncover the underlying DNA loci.
Includes R functions for the estimation of tumor clones percentages for both snp data and (whole) genome sequencing data. See Cheng, Y., Dai, J. Y., Paulson, T. G., Wang, X., Li, X., Reid, B. J., & Kooperberg, C. (2017). Quantification of multiple tumor clones using gene array and sequencing data. The Annals of Applied Statistics, 11(2), 967-991, <doi:10.1214/17-AOAS1026> for more details.
Realize three approaches for Gene-Environment interaction analysis. All of them adopt Sparse Group Minimax Concave Penalty to identify important G variables and G-E interactions, and simultaneously respect the hierarchy between main G and G-E interaction effects. All the three approaches are available for Linear, Logistic, and Poisson regression. Also realize to mine and construct prior information for G variables and G-E interactions.
General purpose TIFF file I/O for R users. Currently the only such package with read and write support for TIFF files with floating point (real-numbered) pixels, and the only package that can correctly import TIFF files that were saved from ImageJ
and write TIFF files than can be correctly read by ImageJ
<https://imagej.net/ij/>. Also supports text image I/O.
Implementation of two multi-criteria decision making methods (MCDM): Intuitionistic Fuzzy Synthetic Measure (IFSM) and Intuitionistic Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (IFTOPSIS) for intuitionistic fuzzy data sets for multi-criteria decision making problems. References describing the methods: JefmaÅ ski (2020) <doi:10.1007/978-3-030-52348-0_4>; JefmaÅ ski, Roszkowska, Kusterka-JefmaÅ ska (2021) <doi:10.3390/e23121636>.
This package provides tools for creating and using lenses to simplify data manipulation. Lenses are composable getter/setter pairs for working with data in a purely functional way. Inspired by the Haskell library lens (Kmett, 2012) <https://hackage.haskell.org/package/lens>. For a fairly comprehensive (and highly technical) history of lenses please see the lens wiki <https://github.com/ekmett/lens/wiki/History-of-Lenses>.
Linear Liu regression coefficient's estimation and testing with different Liu related measures such as MSE, R-squared etc. REFERENCES i. Akdeniz and Kaciranlar (1995) <doi:10.1080/03610929508831585> ii. Druilhet and Mom (2008) <doi:10.1016/j.jmva.2006.06.011> iii. Imdadullah, Aslam, and Saima (2017) iv. Liu (1993) <doi:10.1080/03610929308831027> v. Liu (2001) <doi:10.1016/j.jspi.2010.05.030>.
This package provides functions for fitting various models to capture-recapture data including mixed-effects Cormack-Jolly-Seber(CJS) and multistate models and the multi-variate state model structure for survival estimation and POPAN structured Jolly-Seber models for abundance estimation. There are also Hidden Markov model (HMM) implementations of CJS and multistate models with and without state uncertainty and a simulation capability for HMM models.
This package provides methods for obtaining improved estimates of non-linear cross-validated risks are obtained using targeted minimum loss-based estimation, estimating equations, and one-step estimation (Benkeser, Petersen, van der Laan (2019), <doi:10.1080/01621459.2019.1668794>). Cross-validated area under the receiver operating characteristics curve (LeDell
, Petersen, van der Laan (2015), <doi:10.1214/15-EJS1035>) and other metrics are included.
This package provides a client that grants access to the power of the ohsome API from R. It lets you analyze the rich data source of the OpenStreetMap
(OSM) history. You can retrieve the geometry of OSM data at specific points in time, and you can get aggregated statistics on the evolution of OSM elements and specify your own temporal, spatial and/or thematic filters.
The online principal component regression method can process the online data set. OPCreg implements the online principal component regression method, which is specifically designed to process online datasets efficiently. This method is particularly useful for handling large-scale, streaming data where traditional batch processing methods may be computationally infeasible.The philosophy of the package is described in Guo (2025) <doi:10.1016/j.physa.2024.130308>.
This package provides functions for unconditional and conditional quantiles. These include methods for transformation-based quantile regression, quantile-based measures of location, scale and shape, methods for quantiles of discrete variables, quantile-based multiple imputation, restricted quantile regression, directional quantile classification, and quantile ratio regression. A vignette is given in Geraci (2016, The R Journal) <doi:10.32614/RJ-2016-037> and included in the package.
Semiparametric and parametric estimation of INAR models including a finite sample refinement (Faymonville et al. (2022) <doi:10.1007/s10260-022-00655-0>) for the semiparametric setting introduced in Drost et al. (2009) <doi:10.1111/j.1467-9868.2008.00687.x>, different procedures to bootstrap INAR data (Jentsch, C. and Weià , C.H. (2017) <doi:10.3150/18-BEJ1057>) and flexible simulation of INAR data.