This package provides a Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>.
R function gawdis()
produces multi-trait dissimilarity with more uniform contributions of different traits. de Bello et al. (2021) <doi:10.1111/2041-210X.13537> presented the approach based on minimizing the differences in the correlation between the dissimilarity of each trait, or groups of traits, and the multi-trait dissimilarity. This is done using either an analytic or a numerical solution, both available in the function.
This package provides a grammar of graphics approach for visualizing summary statistics from multiple Genome-wide Association Studies (GWAS). It offers geneticists, bioinformaticians, and researchers a powerful yet flexible tool for illustrating complex genetic associations using data from various GWAS datasets. The visualizations can be extensively customized, facilitating detailed comparative analysis across different genetic studies. Reference: Uffelmann, E. et al. (2021) <doi:10.1038/s43586-021-00056-9>.
This package provides tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables, and functions to work with hierarchical/multilevel batches of parameters (Fernández-i-Marà n, 2016 <doi:10.18637/jss.v070.i09>).
This package provides a set of utilities for querying HaploReg
<https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php>, RegulomeDB
<https://www.regulomedb.org/regulome-search/> web-based tools. The package connects to HaploReg
', RegulomeDB
searches and downloads results, without opening web pages, directly from R environment. Results are stored in a data frame that can be directly used in various kinds of downstream analyses.
This package provides a set of functions to run simple and composite box-models to describe the dynamic or static distribution of stable isotopes in open or closed systems. The package also allows the sweeping of many parameters in both static and dynamic conditions. The mathematical models used in this package are derived from Albarede, 1995, Introduction to Geochemical Modelling, Cambridge University Press, Cambridge <doi:10.1017/CBO9780511622960>.
The IntCal20
radiocarbon calibration curves (Reimer et al. 2020 <doi:10.1017/RDC.2020.68>) are provided here in a single data package, together with previous IntCal
curves (IntCal13
, IntCal09
, IntCal04
, IntCal98
) and postbomb curves. Also provided are functions to copy the curves into memory, and to plot the curves and their underlying data, as well as functions to calibrate radiocarbon dates.
This package provides a collection of tools for interactive manipulation of (spatial) data layers on leaflet web maps. Tools include editing of existing layers, creation of new layers through drawing of shapes (points, lines, polygons), deletion of shapes as well as cutting holes into existing shapes. Provides control over options to e.g. prevent self-intersection of polygons and lines or to enable/disable snapping to align shapes.
This package provides functions that allow for convenient working with vector space models of semantics/distributional semantic models/word embeddings. Originally built for LSA models (hence the name), but can be used for all such vector-based models. For actually building a vector semantic space, use the package lsa or other specialized software. Downloadable semantic spaces can be found at <https://sites.google.com/site/fritzgntr/software-resources>.
Estimate genetic linkage maps for markers on a single chromosome (or in a single linkage group) from pairwise recombination fractions or intermarker distances using weighted metric multidimensional scaling. The methods are suitable for autotetraploid as well as diploid populations. Options for assessing the fit to a known map are also provided. Methods are discussed in detail in Preedy and Hackett (2016) <doi:10.1007/s00122-016-2761-8>.
Estimate Multidimensional Poverty Indices disaggregated by population subgroups based on the Alkire and Foster method (2011) <doi:10.1016/j.jpubeco.2010.11.006>. This includes the calculation of standard errors and confidence intervals. Other partial indices such as incidence, intensity and indicator-specific measures as well as intertemporal changes analysis can also be estimated. The standard errors and confidence intervals are calculated considering the complex survey design.
This package provides a collection of functions for modelling mutations in pedigrees with marker data, as used e.g. in likelihood computations with microsatellite data. Implemented models include equal, proportional and stepwise models, as well as random models for experimental work, and custom models allowing the user to apply any valid mutation matrix. Allele lumping is done following the lumpability criteria of Kemeny and Snell (1976), ISBN:0387901922.
Basic functions to fit and predict periodic autoregressive time series models. These models are discussed in the book P.H. Franses (1996) "Periodicity and Stochastic Trends in Economic Time Series", Oxford University Press. Data set analyzed in that book is also provided. NOTE: the package was orphaned during several years. It is now only maintained, but no major enhancements are expected, and the maintainer cannot provide any support.
The base R data.frame, like any vector, is copied upon modification. This behavior is at odds with that of GUIs and interactive graphics. To rectify this, plumbr provides a mutable, dynamic tabular data model. Models may be chained together to form the complex plumbing necessary for sophisticated graphical interfaces. Also included is a general framework for linking datasets; an typical use case would be a linked brush.
An efficient tool designed for differential analysis of large-scale RNA sequencing (RNAseq) data and Bisulfite sequencing (BSseq) data in the presence of individual relatedness and population structure. PQLseq first fits a Generalized Linear Mixed Model (GLMM) with adjusted covariates, predictor of interest and random effects to account for population structure and individual relatedness, and then performs Wald tests for each gene in RNAseq or site in BSseq.
This package performs genomic prediction of hybrid performance using eight statistical methods including GBLUP, BayesB
, RKHS, PLS, LASSO, EN, LightGBM
and XGBoost along with additive and additive-dominance models. Users are able to incorporate parental phenotypic information in all methods based on their specific needs. (Xu S et al(2017) <doi:10.1534/g3.116.038059>; Xu Y et al (2021) <doi: 10.1111/pbi.13458>).
Designed for prediction error estimation through resampling techniques, possibly accelerated by parallel execution on a compute cluster. Newly developed model fitting routines can be easily incorporated. Methods used in the package are detailed in Porzelius Ch., Binder H. and Schumacher M. (2009) <doi:10.1093/bioinformatics/btp062> and were used, for instance, in Porzelius Ch., Schumacher M.and Binder H. (2011) <doi:10.1007/s00180-011-0236-6>.
This package provides functions for interacting directly with the Quandl API to offer data in a number of formats usable in R, downloading a zip with all data from a Quandl database, and the ability to search. This R package uses the Quandl API. For more information go to <https://docs.quandl.com>. For more help on the package itself go to <https://www.quandl.com/tools/r>.
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR
discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>
). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>
.
Enables researchers to sample redistricting plans from a pre-specified target distribution using Sequential Monte Carlo and Markov Chain Monte Carlo algorithms. The package allows for the implementation of various constraints in the redistricting process such as geographic compactness and population parity requirements. Tools for analysis such as computation of various summary statistics and plotting functionality are also included. The package implements the SMC algorithm of McCartan
and Imai (2023) <doi:10.1214/23-AOAS1763>, the enumeration algorithm of Fifield, Imai, Kawahara, and Kenny (2020) <doi:10.1080/2330443X.2020.1791773>, the Flip MCMC algorithm of Fifield, Higgins, Imai and Tarr (2020) <doi:10.1080/10618600.2020.1739532>, the Merge-split/Recombination algorithms of Carter et al. (2019) <arXiv:1911.01503>
and DeFord
et al. (2021) <doi:10.1162/99608f92.eb30390f>, and the Short-burst optimization algorithm of Cannon et al. (2020) <arXiv:2011.02288>
.
Bayesian inference using the no-U-turn (NUTS) algorithm by Hoffman and Gelman (2014) <https://www.jmlr.org/papers/v15/hoffman14a.html>. Designed for AD Model Builder ('ADMB') models, or when R functions for log-density and log-density gradient are available, such as Template Model Builder models and other special cases. Functionality is similar to Stan', and the rstan and shinystan packages are used for diagnostics and inference.
Offers a set of functions to easily make predictions for univariate time series. autoTS
is a wrapper of existing functions of the forecast and prophet packages, harmonising their outputs in tidy dataframes and using default values for each. The core function getBestModel()
allows the user to effortlessly benchmark seven algorithms along with a bagged estimator to identify which one performs the best for a given time series.
Computes Bayesian A- and D-optimal block designs under the linear mixed effects model settings using block/array exchange algorithm of Debusho, Gemechu and Haines (2018) <doi:10.1080/03610918.2018.1429617> where the interest is in a comparison of all possible elementary treatment contrasts. The package also provides an optional method of using the graphical user interface (GUI) R package tcltk to ensure that it is user friendly.
Analyzes longitudinal Electronic Health Record (EHR) data with possibly informative observational time. These methods are grouped into two classes depending on the inferential task. One group focuses on estimating the effect of an exposure on a longitudinal biomarker while the other group assesses the impact of a longitudinal biomarker on time-to-diagnosis outcomes. The accompanying paper is Du et al (2024) <doi:10.48550/arXiv.2410.13113>
.