This package provides a straightforward model to estimate soil migration rates across various soil contexts. Based on the compartmental, vertically-resolved, physically-based mass balance model of Soto and Navas (2004) <doi:10.1016/j.jaridenv.2004.02.003> and Soto and Navas (2008) <doi:10.1016/j.radmeas.2008.02.024>. RadEro provides a user-friendly interface in R, utilizing input data such as 137Cs inventories and parameters directly derived from soil samples (e.g., fine fraction density, effective volume) to accurately capture the 137Cs distribution within the soil profile. The model simulates annual 137Cs fallout, radioactive decay, and vertical diffusion, with the diffusion coefficient calculated from 137Cs reference inventory profiles. Additionally, it allows users to input custom parameters as calibration coefficients. The RadEro user manual and protocol, including detailed instructions on how to format input data and configuration files, can be found at the following link: <https://github.com/eead-csic-eesa/RadEro>.
This package provides the timing functions tic and toc that can be nested. One can record all timings while a complex script is running, and examine the values later. It is also possible to instrument the timing call with custom callbacks. In addition, this package provides class 'Stack', implemented as a vector, and class 'List', implemented as a list, both of whic support operations 'push', 'pop', 'first', 'last' and 'clear'.
This package provides tools for the analysis of complex survey samples. The provided features include: summary statistics, two-sample tests, rank tests, generalised linear models, cumulative link models, Cox models, loglinear models, and general maximum pseudolikelihood estimation for multistage stratified, cluster-sampled, unequally weighted survey samples; variances by Taylor series linearisation or replicate weights; post-stratification, calibration, and raking; two-phase subsampling designs; graphics; PPS sampling without replacement; principal components, and factor analysis.
Waffle plots are rectangular pie charts that represent a quantity or abundances using colored squares or other symbol. This makes them better at transmitting information as the discrete number of squares is easier to read than the circular area of pie charts. While the original waffle charts were rectangular with 10 rows and columns, with a single square representing 1%, they are nowadays popular in various infographics to visualize any proportional ratios.
Introduces a Copilot'-like completion experience, but it knows how to talk to the objects in your R environment. ellmer chats are integrated directly into your RStudio and Positron sessions, automatically incorporating relevant context from surrounding lines of code and your global environment (like data frame columns and types). Open the package dialog box with a keyboard shortcut, type your request, and the assistant will stream its response directly into your documents.
Fits a Gaussian process model to data. Gaussian processes are commonly used in computer experiments to fit an interpolating model. The model is stored as an R6 object and can be easily updated with new data. There are options to run in parallel, and Rcpp has been used to speed up calculations. For more info about Gaussian process software, see Erickson et al. (2018) <doi:10.1016/j.ejor.2017.10.002>.
Implementing the interventional effects for mediation analysis for up to 3 mediators. The methods used are based on VanderWeele, Vansteelandt and Robins (2014) <doi:10.1097/ede.0000000000000034>, Vansteelandt and Daniel (2017) <doi:10.1097/ede.0000000000000596> and Chan and Leung (2020; unpublished manuscript, available on request from the author of this package). Linear regression, logistic regression and Poisson regression are used for continuous, binary and count mediator/outcome variables respectively.
This package implements Individual Conditional Expectation (ICE) plots, a tool for visualizing the model estimated by any supervised learning algorithm. ICE plots refine Friedman's partial dependence plot by graphing the functional relationship between the predicted response and a covariate of interest for individual observations. Specifically, ICE plots highlight the variation in the fitted values across the range of a covariate of interest, suggesting where and to what extent they may exist.
Implementation of the methods described in Holzmann, Klar (2024) <doi: 10.1111/sjos.12733>. Lancaster correlation is a correlation coefficient which equals the absolute value of the Pearson correlation for the bivariate normal distribution, and is equal to or slightly less than the maximum correlation coefficient for a variety of bivariate distributions. Rank and moment-based estimators and corresponding confidence intervals are implemented, as well as independence tests based on these statistics.
Maximum likelihood estimates (MLE) of the proportions of 5-mC and 5-hmC in the DNA using information from BS-conversion, TAB-conversion, and oxBS-conversion methods. One can use information from all three methods or any combination of two of them. Estimates are based on Binomial model by Qu et al. (2013) <doi:10.1093/bioinformatics/btt459> and Kiihl et al. (2019) <doi:10.1515/sagmb-2018-0031>.
Generate interactive html reports that enable quick visual review of multiple related time series stored in a data frame. For static datasets, this can help to identify any temporal artefacts that may affect the validity of subsequent analyses. For live data feeds, regularly scheduled reports can help to pro-actively identify data feed problems or unexpected trends that may require action. The reports are self-contained and shareable without a web server.
This package provides functions to aid in micro and macro economic analysis and handling of price and currency data. Includes extraction of relevant inflation and exchange rate data from World Bank API, data cleaning/parsing, and standardisation. Inflation adjustment calculations as found in Principles of Macroeconomics by Gregory Mankiw et al (2014). Current and historical end of day exchange rates for 171 currencies from the European Central Bank Statistical Data Warehouse (2020).
This package provides tools for loading and processing passive acoustic data. Read in data that has been processed in Pamguard (<https://www.pamguard.org/>), apply a suite processing functions, and export data for reports or external modeling tools. Parameter calculations implement methods by Oswald et al (2007) <doi:10.1121/1.2743157>, Griffiths et al (2020) <doi:10.1121/10.0001229> and Baumann-Pickering et al (2010) <doi:10.1121/1.3479549>.
This package provides methods for spatial and spatio-temporal smoothing of demographic and health indicators using survey data, with particular focus on estimating and projecting under-five mortality rates, described in Mercer et al. (2015) <doi:10.1214/15-AOAS872>, Li et al. (2019) <doi:10.1371/journal.pone.0210645>, Wu et al. (DHS Spatial Analysis Reports No. 21, 2021), and Li et al. (2023) <doi:10.48550/arXiv.2007.05117>.
Sonification (or audification) is the process of representing data by sounds in the audible range. This package provides the R function sonify() that transforms univariate data, sampled at regular or irregular intervals, into a continuous sound with time-varying frequency. The ups and downs in frequency represent the ups and downs in the data. Sonify provides a substitute for R's plot function to simplify data analysis for the visually impaired.
Classical methods for combining summary data from genome-wide association studies (GWAS) only use marginal genetic effects and power can be compromised in the presence of heterogeneity. subgxe is a R package that implements p-value assisted subset testing for association (pASTA), a method developed by Yu et al. (2019) <doi:10.1159/000496867>. pASTA generalizes association analysis based on subsets by incorporating gene-environment interactions into the testing procedure.
Provide model averaging-based approaches that can be used to predict personalized survival probabilities. The key underlying idea is to approximate the conditional survival function using a weighted average of multiple candidate models. Two scenarios of candidate models are allowed: (Scenario 1) partial linear Cox model and (Scenario 2) time-varying coefficient Cox model. A reference of the underlying methods is Li and Wang (2023) <doi:10.1016/j.csda.2023.107759>.
Fits linear difference-in-differences models in scenarios where intervention roll-outs are staggered over time. The package implements a version of an approach proposed by Sun and Abraham (2021) <doi:10.1016/j.jeconom.2020.09.006> to estimate cohort- and time-since-treatment specific difference-in-differences parameters, and it provides convenience functions both for specifying the model and for flexibly aggregating coefficients to answer a variety of research questions.
Multivariate regression methodologies including classical reduced-rank regression (RRR) studied by Anderson (1951) <doi:10.1214/aoms/1177729580> and Reinsel and Velu (1998) <doi:10.1007/978-1-4757-2853-8>, reduced-rank regression via adaptive nuclear norm penalization proposed by Chen et al. (2013) <doi:10.1093/biomet/ast036> and Mukherjee et al. (2015) <doi:10.1093/biomet/asx080>, robust reduced-rank regression (R4) proposed by She and Chen (2017) <doi:10.1093/biomet/asx032>, generalized/mixed-response reduced-rank regression (mRRR) proposed by Luo et al. (2018) <doi:10.1016/j.jmva.2018.04.011>, row-sparse reduced-rank regression (SRRR) proposed by Chen and Huang (2012) <doi:10.1080/01621459.2012.734178>, reduced-rank regression with a sparse singular value decomposition (RSSVD) proposed by Chen et al. (2012) <doi:10.1111/j.1467-9868.2011.01002.x> and sparse and orthogonal factor regression (SOFAR) proposed by Uematsu et al. (2019) <doi:10.1109/TIT.2019.2909889>.
BSeq-sc is a bioinformatics analysis pipeline that leverages single-cell sequencing data to estimate cell type proportion and cell type-specific gene expression differences from RNA-seq data from bulk tissue samples. This is a companion package to the publication "A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure." Baron et al. Cell Systems (2016) https://www.ncbi.nlm.nih.gov/pubmed/27667365.
This a package containing diverse spatial datasets for demonstrating, benchmarking and teaching spatial data analysis. It includes R data of class sf, Spatial, and nb. It also contains data stored in a range of file formats including GeoJSON, ESRI Shapefile and GeoPackage. Some of the datasets are designed to illustrate specific analysis techniques. cycle_hire() and cycle_hire_osm(), for example, are designed to illustrate point pattern analysis techniques.
This package provides e-statistics (energy) tests and statistics for multivariate and univariate inference, including distance correlation, one-sample, two-sample, and multi-sample tests for comparing multivariate distributions, are implemented. Measuring and testing multivariate independence based on distance correlation, partial distance correlation, multivariate goodness-of-fit tests, clustering based on energy distance, testing for multivariate normality, distance components (disco) for non-parametric analysis of structured data, and other energy statistics/methods are implemented.
This package provides an implementation of sparse linear discriminant analysis, which is a supervised classification method for multiple classes. Various novel optimization approaches to this problem are implemented including alternating direction method of multipliers (ADMM), proximal gradient (PG) and accelerated proximal gradient (APG). Functions for performing cross validation are also supplied along with basic prediction and plotting functions. Sparse zero variance discriminant (SZVD) analysis is also included in the package.
This package implements anomaly detection as binary classification for cross-sectional data. Uses maximum likelihood estimates and normal probability functions to classify observations as anomalous. The method is presented in the following lecture from the Machine Learning course by Andrew Ng: <https://www.coursera.org/learn/machine-learning/lecture/C8IJp/algorithm/>, and is also described in: Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, Jaideep Srivastava (2003) <doi:10.1137/1.9781611972733.3>.