_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-diagl1 1.0.0
Propagated dependencies: r-quantreg@6.1 r-matrixmodels@0.5-4 r-matrix@1.7-3 r-mass@7.3-65 r-lawstat@3.6 r-greekletters@1.0.4 r-foreach@1.5.2 r-doparallel@1.0.17 r-cubature@2.1.3 r-conquer@1.3.3
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=diagL1
Licenses: GPL 2+
Synopsis: Routines for Fit, Inference and Diagnostics in Linear L1 and LAD Models
Description:

Diagnostics for linear L1 regression (also known as LAD - Least Absolute Deviations), including: estimation, confidence intervals, tests of hypotheses, measures of leverage, methods of diagnostics for L1 regression, special diagnostics graphs and measures of leverage. The algorithms are based in Dielman (2005) <doi:10.1080/0094965042000223680>, Elian et al. (2000) <doi:10.1080/03610920008832518> and Dodge (1997) <doi:10.1006/jmva.1997.1666>. This package builds on the quantreg package, which is a well-established package for tuning quantile regression models. There are also tests to verify if the errors have a Laplace distribution based on the work of Puig and Stephens (2000) <doi:10.2307/1270952>.

r-grpreg 3.5.0
Propagated dependencies: r-matrix@1.7-3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://pbreheny.github.io/grpreg/
Licenses: GPL 3
Synopsis: Regularization Paths for Regression Models with Grouped Covariates
Description:

Efficient algorithms for fitting the regularization path of linear regression, GLM, and Cox regression models with grouped penalties. This includes group selection methods such as group lasso, group MCP, and group SCAD as well as bi-level selection methods such as the group exponential lasso, the composite MCP, and the group bridge. For more information, see Breheny and Huang (2009) <doi:10.4310/sii.2009.v2.n3.a10>, Huang, Breheny, and Ma (2012) <doi:10.1214/12-sts392>, Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>, and Breheny (2015) <doi:10.1111/biom.12300>, or visit the package homepage <https://pbreheny.github.io/grpreg/>.

r-gretel 0.0.1
Propagated dependencies: r-resistorarray@1.0-32 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/davidbuch/gretel
Licenses: GPL 3
Synopsis: Generalized Path Analysis for Social Networks
Description:

The social network literature features numerous methods for assigning value to paths as a function of their ties. gretel systemizes these approaches, casting them as instances of a generalized path value function indexed by a penalty parameter. The package also calculates probabilistic path value and identifies optimal paths in either value framework. Finally, proximity matrices can be generated in these frameworks that capture high-order connections overlooked in primitive adjacency sociomatrices. Novel methods are described in Buch (2019) <https://davidbuch.github.io/analyzing-networks-with-gretel.html>. More traditional methods are also implemented, as described in Yang, Knoke (2001) <doi:10.1016/S0378-8733(01)00043-0>.

r-merror 3.0
Propagated dependencies: r-openmx@2.22.7
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=merror
Licenses: GPL 2+
Synopsis: Accuracy and Precision of Measurements
Description:

N>=3 methods are used to measure each of n items. The data are used to estimate simultaneously systematic error (bias) and random error (imprecision). Observed measurements for each method or device are assumed to be linear functions of the unknown true values and the errors are assumed normally distributed. Pairwise calibration curves and plots can be easily generated. Unlike the ncb.od function, the omx function builds a one-factor measurement error model using OpenMx and allows missing values, uses full information maximum likelihood to estimate parameters, and provides both likelihood-based and bootstrapped confidence intervals for all parameters, in addition to Wald-type intervals.

r-mgwrhw 1.1.1.5
Propagated dependencies: r-tidyr@1.3.1 r-spgwr@0.6-37 r-sf@1.0-21 r-psych@2.5.3 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mgwrhw
Licenses: GPL 3
Synopsis: Displays GWR (Geographically Weighted Regression) and Mixed GWR Output and Map
Description:

Display processing results using the GWR (Geographically Weighted Regression) method, display maps, and show the results of the Mixed GWR (Mixed Geographically Weighted Regression) model which automatically selects global variables based on variability between regions. This function refers to Yasin, & Purhadi. (2012). "Mixed Geographically Weighted Regression Model (Case Study the Percentage of Poor Households in Mojokerto 2008)". European Journal of Scientific Research, 188-196. <https://www.researchgate.net/profile/Hasbi-Yasin-2/publication/289689583_Mixed_geographically_weighted_regression_model_case_study_The_percentage_of_poor_households_in_Mojokerto_2008/links/58e46aa40f7e9bbe9c94d641/Mixed-geographically-weighted-regression-model-case-study-The-percentage-of-poor-households-in-Mojokerto-2008.pdf>.

r-prwarp 1.0.1
Propagated dependencies: r-morpho@2.12
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=prWarp
Licenses: GPL 3
Synopsis: Warping Landmark Configurations
Description:

Compute bending energies, principal warps, partial warp scores, and the non-affine component of shape variation for 2D landmark configurations, as well as Mardia-Dryden distributions and self-similar distributions of landmarks, as described in Mitteroecker et al. (2020) <doi:10.1093/sysbio/syaa007>. Working examples to decompose shape variation into small-scale and large-scale components, and to decompose the total shape variation into outline and residual shape components are provided. Two landmark datasets are provided, that quantify skull morphology in humans and papionin primates, respectively from Mitteroecker et al. (2020) <doi:10.5061/dryad.j6q573n8s> and Grunstra et al. (2020) <doi:10.5061/dryad.zkh189373>.

r-survmi 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SurvMI
Licenses: GPL 2
Synopsis: Multiple Imputation Method in Survival Analysis
Description:

In clinical trials, endpoints are sometimes evaluated with uncertainty. Adjudication is commonly adopted to ensure the study integrity. We propose to use multiple imputation (MI) introduced by Robin (1987) <doi:10.1002/9780470316696> to incorporate these uncertainties if reasonable event probabilities were provided. The method has been applied to Cox Proportional Hazard (PH) model, Kaplan-Meier (KM) estimation and Log-rank test in this package. Moreover, weighted estimations discussed in Cook (2004) <doi:10.1016/S0197-2456(00)00053-2> were also implemented with weights calculated from event probabilities. In conclusion, this package can handle time-to-event analysis if events presented with uncertainty by different methods.

r-tramme 1.0.7
Propagated dependencies: r-variables@1.1-2 r-tram@1.2-3 r-tmb@1.9.17 r-reformulas@0.4.1 r-rcppeigen@0.3.4.0.2 r-numderiv@2016.8-1.1 r-nlme@3.1-168 r-mvtnorm@1.3-3 r-mlt@1.6-6 r-mgcv@1.9-3 r-matrix@1.7-3 r-mass@7.3-65 r-coneproj@1.20 r-basefun@1.2-3 r-alabama@2023.1.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: http://ctm.R-forge.R-project.org
Licenses: GPL 2
Synopsis: Transformation Models with Mixed Effects
Description:

Likelihood-based estimation of mixed-effects transformation models using the Template Model Builder ('TMB', Kristensen et al., 2016) <doi:10.18637/jss.v070.i05>. The technical details of transformation models are given in Hothorn et al. (2018) <doi:10.1111/sjos.12291>. Likelihood contributions of exact, randomly censored (left, right, interval) and truncated observations are supported. The random effects are assumed to be normally distributed on the scale of the transformation function, the marginal likelihood is evaluated using the Laplace approximation, and the gradients are calculated with automatic differentiation (Tamasi & Hothorn, 2021) <doi:10.32614/RJ-2021-075>. Penalized smooth shift terms can be defined using mgcv'.

r-future 1.49.0
Propagated dependencies: r-digest@0.6.37 r-globals@0.18.0 r-listenv@0.9.1 r-parallelly@1.44.0
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/HenrikBengtsson/future
Licenses: LGPL 2.1+
Synopsis: Unified parallel and distributed processing in R
Description:

The purpose of this package is to provide a lightweight and unified Future API for sequential and parallel processing of R expression via futures. This package implements sequential, multicore, multisession, and cluster futures. With these, R expressions can be evaluated on the local machine, in parallel a set of local machines, or distributed on a mix of local and remote machines. Extensions to this package implement additional backends for processing futures via compute cluster schedulers etc. Because of its unified API, there is no need to modify any code in order to switch from sequential on the local machine to, say, distributed processing on a remote compute cluster.

r-ctring 0.1.0
Propagated dependencies: r-xring@0.1.1 r-oro-dicom@0.5.3 r-functional@0.6
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CTRing
Licenses: GPL 3
Synopsis: Density Profiles of Wood from CT Scan Images
Description:

Computerized tomography (CT) can be used to assess certain wood properties when wood disks or logs are scanned. Wood density profiles (i.e. variations of wood density from pith to bark) can yield important information used for studies in forest resource assessment, wood quality and dendrochronology studies. The first step consists in transforming grey values from the scan images to density values. The packages then proposes a unique method to automatically locate the pith by combining an adapted Hough Transform method and a one-dimensional edge detector. Tree ring profiles (average ring density, earlywood and latewood density, ring width and percent latewood for each ring) are then obtained.

r-fuzzyr 2.3.2
Propagated dependencies: r-shiny@1.10.0 r-plyr@1.8.9
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://www.lucidresearch.org/
Licenses: GPL 2+
Synopsis: Fuzzy Logic Toolkit for R
Description:

Design and simulate fuzzy logic systems using Type-1 and Interval Type-2 Fuzzy Logic. This toolkit includes with graphical user interface (GUI) and an adaptive neuro- fuzzy inference system (ANFIS). This toolkit is a continuation from the previous package ('FuzzyToolkitUoN'). Produced by the Intelligent Modelling & Analysis Group (IMA) and Lab for UnCertainty In Data and decision making (LUCID), University of Nottingham. A big thank you to the many people who have contributed to the development/evaluation of the toolbox. Please cite the toolbox and the corresponding paper <doi:10.1109/FUZZ48607.2020.9177780> when using it. More related papers can be found in the NEWS.

r-gluedo 0.1.0
Propagated dependencies: r-glue@1.8.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glueDo
Licenses: Expat
Synopsis: Wrapper Functions for the 'glue' Library
Description:

This package provides convenient wrapper functions around the glue library for common string interpolation tasks. The package simplifies the process of combining glue string templating with common R functions like message(), warning(), stop(), print(), cat(), and file writing operations. Instead of manually calling glue() and then passing the result to these functions, glueDo provides direct wrapper functions that handle both steps in a single call. This is particularly useful for logging, error handling, and formatted output in R scripts and packages. The main reference for the underlying glue package is Hester and Bryan (2022) <https://CRAN.R-project.org/package=glue>.

r-pliman 3.0.0
Propagated dependencies: r-terra@1.8-50 r-sf@1.0-21 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-purrr@1.0.4 r-future@1.49.0 r-foreach@1.5.2 r-exactextractr@0.10.0 r-dplyr@1.1.4 r-dofuture@1.1.0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://nepem-ufsc.github.io/pliman/
Licenses: GPL 3+
Synopsis: Tools for Plant Image Analysis
Description:

This package provides tools for both single and batch image manipulation and analysis (Olivoto, 2022 <doi:10.1111/2041-210X.13803>) and phytopathometry (Olivoto et al., 2022 <doi:10.1007/S40858-021-00487-5>). The tools can be used for the quantification of leaf area, object counting, extraction of image indexes, shape measurement, object landmark identification, and Elliptical Fourier Analysis of object outlines (Claude (2008) <doi:10.1007/978-0-387-77789-4>). The package also provides a comprehensive pipeline for generating shapefiles with complex layouts and supports high-throughput phenotyping of RGB, multispectral, and hyperspectral orthomosaics. This functionality facilitates field phenotyping using UAV- or satellite-based imagery.

r-pprank 0.1.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=ppRank
Licenses: GPL 3
Synopsis: Classification of Algorithms
Description:

This package implements the Bi-objective Lexicographical Classification method and Performance Assessment Ratio at 10% metric for algorithm classification. Constructs matrices representing algorithm performance under multiple criteria, facilitating decision-making in algorithm selection and evaluation. Analyzes and compares algorithm performance based on various metrics to identify the most suitable algorithms for specific tasks. This package includes methods for algorithm classification and evaluation, with examples provided in the documentation. Carvalho (2019) presents a statistical evaluation of algorithmic computational experimentation with infeasible solutions <doi:10.48550/arXiv.1902.00101>. Moreira and Carvalho (2023) analyze power in preprocessing methodologies for datasets with missing values <doi:10.1080/03610918.2023.2234683>.

r-ptable 1.0.0
Propagated dependencies: r-rmarkdown@2.29 r-rlang@1.1.6 r-rcolorbrewer@1.1-3 r-nloptr@2.2.1 r-ggplot2@3.5.2 r-flexdashboard@0.6.2 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/sdcTools/ptable
Licenses: FSDG-compatible
Synopsis: Generation of Perturbation Tables for the Cell-Key Method
Description:

Tabular data from statistical institutes and agencies are mostly confidential and must be protected prior to publications. The cell-key method is a post-tabular Statistical Disclosure Control perturbation technique that adds random noise to tabular data. The statistical properties of the perturbations are defined by some noise probability distributions - also referred to as perturbation tables. This tool can be used to create the perturbation tables based on a maximum entropy approach as described for example in Giessing (2016) <doi:10.1007/978-3-319-45381-1_18>. The perturbation tables created can finally be used to apply a cell-key method to frequency count or magnitude tables.

r-smooth 4.3.0
Propagated dependencies: r-zoo@1.8-14 r-xtable@1.8-4 r-statmod@1.5.0 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-pracma@2.4.4 r-nloptr@2.2.1 r-mass@7.3-65 r-greybox@2.0.5 r-generics@0.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/config-i1/smooth
Licenses: LGPL 2.1
Synopsis: Forecasting Using State Space Models
Description:

This package provides functions implementing Single Source of Error state space models for purposes of time series analysis and forecasting. The package includes ADAM (Svetunkov, 2023, <https://openforecast.org/adam/>), Exponential Smoothing (Hyndman et al., 2008, <doi: 10.1007/978-3-540-71918-2>), SARIMA (Svetunkov & Boylan, 2019 <doi: 10.1080/00207543.2019.1600764>), Complex Exponential Smoothing (Svetunkov & Kourentzes, 2018, <doi: 10.13140/RG.2.2.24986.29123>), Simple Moving Average (Svetunkov & Petropoulos, 2018 <doi: 10.1080/00207543.2017.1380326>) and several simulation functions. It also allows dealing with intermittent demand based on the iETS framework (Svetunkov & Boylan, 2019, <doi: 10.13140/RG.2.2.35897.06242>).

r-tandem 1.0.3
Propagated dependencies: r-matrix@1.7-3 r-glmnet@4.1-8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=TANDEM
Licenses: GPL 2
Synopsis: Two-Stage Approach to Maximize Interpretability of Drug Response Models Based on Multiple Molecular Data Types
Description:

This package provides a two-stage regression method that can be used when various input data types are correlated, for example gene expression and methylation in drug response prediction. In the first stage it uses the upstream features (such as methylation) to predict the response variable (such as drug response), and in the second stage it uses the downstream features (such as gene expression) to predict the residuals of the first stage. In our manuscript (Aben et al., 2016, <doi:10.1093/bioinformatics/btw449>), we show that using TANDEM prevents the model from being dominated by gene expression and that the features selected by TANDEM are more interpretable.

r-taxize 0.10.0
Propagated dependencies: r-zoo@1.8-14 r-xml2@1.3.8 r-worrms@0.4.3 r-wikitaxa@0.4.0 r-tibble@3.2.1 r-stringi@1.8.7 r-rredlist@1.1.0 r-rotl@3.1.0 r-ritis@1.0.0 r-r6@2.6.1 r-phangorn@2.12.1 r-natserv@1.0.0 r-lifecycle@1.0.4 r-jsonlite@2.0.0 r-data-table@1.17.4 r-curl@6.2.3 r-crul@1.5.0 r-crayon@1.5.3 r-cli@3.6.5 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://docs.ropensci.org/taxize/
Licenses: Expat
Synopsis: Taxonomic Information from Around the Web
Description:

Interacts with a suite of web application programming interfaces (API) for taxonomic tasks, such as getting database specific taxonomic identifiers, verifying species names, getting taxonomic hierarchies, fetching downstream and upstream taxonomic names, getting taxonomic synonyms, converting scientific to common names and vice versa, and more. Some of the services supported include NCBI E-utilities (<https://www.ncbi.nlm.nih.gov/books/NBK25501/>), Encyclopedia of Life (<https://eol.org/docs/what-is-eol/data-services>), Global Biodiversity Information Facility (<https://techdocs.gbif.org/en/openapi/>), and many more. Links to the API documentation for other supported services are available in the documentation for their respective functions in this package.

r-docovt 0.2
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=Docovt
Licenses: Expat
Synopsis: Distributed Online Covariance Matrix Tests
Description:

Distributed Online Covariance Matrix Tests Docovt is a powerful tool designed to efficiently process and analyze distributed datasets. It enables users to perform covariance matrix tests in an online, distributed manner, making it highly suitable for large-scale data analysis. By leveraging advanced computational techniques, Docovt ensures robust and scalable solutions for statistical analysis, particularly in scenarios where data is dispersed across multiple nodes or sources. This package is ideal for researchers and practitioners working with high-dimensional data, providing a flexible and efficient framework for covariance matrix estimation and hypothesis testing. The philosophy of Docovt is described in Guo G.(2025) <doi:10.1016/j.physa.2024.130308>.

r-finnet 0.2.1
Propagated dependencies: r-rcpp@1.0.14 r-matrix@1.7-3
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://fatelarico.github.io/FinNet.html
Licenses: GPL 3+
Synopsis: Quickly Build and Manipulate Financial Networks
Description:

Providing classes, methods, and functions to deal with financial networks. Users can easily store information about both physical and legal persons by using pre-made classes that are studied for integration with scraping packages such as rvest and RSelenium'. Moreover, the package assists in creating various types of financial networks depending on the type of relation between its units depending on the relation under scrutiny (ownership, board interlocks, etc.), the desired tie type (valued or binary), and renders them in the most common formats (adjacency matrix, incidence matrix, edge list, igraph', network'). There are also ad-hoc functions for the Fiedler value, global network efficiency, and cascade-failure analysis.

r-ibmdbr 1.51.0
Propagated dependencies: r-rpart-plot@3.1.3 r-rpart@4.1.24 r-rodbc@1.3-26 r-matrix@1.7-3 r-mass@7.3-65 r-arules@1.7-11
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=ibmdbR
Licenses: GPL 3
Synopsis: IBM in-Database Analytics for R
Description:

Functionality required to efficiently use R with IBM(R) Db2(R) Warehouse offerings (formerly IBM dashDB(R)) and IBM Db2 for z/OS(R) in conjunction with IBM Db2 Analytics Accelerator for z/OS. Many basic and complex R operations are pushed down into the database, which removes the main memory boundary of R and allows to make full use of parallel processing in the underlying database. For executing R-functions in a multi-node environment in parallel the idaTApply() function requires the SparkR package (<https://spark.apache.org/docs/latest/sparkr.html>). The optional ggplot2 package is needed for the plot.idaLm() function only.

r-kollar 1.1.1
Propagated dependencies: r-zoo@1.8-14 r-tidyr@1.3.1 r-shiny@1.10.0 r-scales@1.4.0 r-plotly@4.10.4 r-patchwork@1.3.0 r-magick@2.8.6 r-jpeg@0.1-11 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-ggforce@0.4.2 r-dplyr@1.1.4 r-base64enc@0.1-3
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://drjohanlk.github.io/kollaR/demo.html
Licenses: GPL 3
Synopsis: Event Classification, Visualization and Analysis of Eye Tracking Data
Description:

This package provides functions for analysing eye tracking data, including event detection, visualizations and area of interest (AOI) based analyses. The package includes implementations of the IV-T, I-DT, adaptive velocity threshold, and Identification by two means clustering (I2MC) algorithms. See separate documentation for each function. The principles underlying I-VT and I-DT algorithms are described in Salvucci & Goldberg (2000,\doi10.1145/355017.355028). Two-means clustering is described in Hessels et al. (2017, \doi10.3758/s13428-016-0822-1). The adaptive velocity threshold algorithm is described in Nyström & Holmqvist (2010,\doi10.3758/BRM.42.1.188). See a demonstration in the URL.

r-rpanda 2.4
Propagated dependencies: r-vegan@2.6-10 r-tess@2.1.2 r-rmpfr@1.1-0 r-rcolorbrewer@1.1-3 r-raster@3.6-32 r-r-utils@2.13.0 r-pvclust@2.2-0 r-pspline@1.0-21 r-pracma@2.4.4 r-picante@1.8.2 r-phytools@2.4-4 r-phangorn@2.12.1 r-parallellogger@3.4.2 r-mvtnorm@1.3-3 r-mvmorph@1.2.1 r-matrix@1.7-3 r-igraph@2.1.4 r-gunifrac@1.8 r-glassofast@1.0.1 r-geiger@2.0.11 r-fpc@2.2-13 r-fields@16.3.1 r-desolve@1.40 r-coda@0.19-4.1 r-cluster@2.1.8.1 r-bipartite@2.21 r-bb@2019.10-1 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/hmorlon/PANDA
Licenses: GPL 2
Synopsis: Phylogenetic ANalyses of DiversificAtion
Description:

This package implements macroevolutionary analyses on phylogenetic trees. See Morlon et al. (2010) <DOI:10.1371/journal.pbio.1000493>, Morlon et al. (2011) <DOI:10.1073/pnas.1102543108>, Condamine et al. (2013) <DOI:10.1111/ele.12062>, Morlon et al. (2014) <DOI:10.1111/ele.12251>, Manceau et al. (2015) <DOI:10.1111/ele.12415>, Lewitus & Morlon (2016) <DOI:10.1093/sysbio/syv116>, Drury et al. (2016) <DOI:10.1093/sysbio/syw020>, Manceau et al. (2016) <DOI:10.1093/sysbio/syw115>, Morlon et al. (2016) <DOI:10.1111/2041-210X.12526>, Clavel & Morlon (2017) <DOI:10.1073/pnas.1606868114>, Drury et al. (2017) <DOI:10.1093/sysbio/syx079>, Lewitus & Morlon (2017) <DOI:10.1093/sysbio/syx095>, Drury et al. (2018) <DOI:10.1371/journal.pbio.2003563>, Clavel et al. (2019) <DOI:10.1093/sysbio/syy045>, Maliet et al. (2019) <DOI:10.1038/s41559-019-0908-0>, Billaud et al. (2019) <DOI:10.1093/sysbio/syz057>, Lewitus et al. (2019) <DOI:10.1093/sysbio/syz061>, Aristide & Morlon (2019) <DOI:10.1111/ele.13385>, Maliet et al. (2020) <DOI:10.1111/ele.13592>, Drury et al. (2021) <DOI:10.1371/journal.pbio.3001270>, Perez-Lamarque & Morlon (2022) <DOI:10.1111/mec.16478>, Perez-Lamarque et al. (2022) <DOI:10.1101/2021.08.30.458192>, Mazet et al. (2023) <DOI:10.1111/2041-210X.14195>, Drury et al. (2024) <DOI:10.1016/j.cub.2023.12.055>.

r-georob 0.3-23
Propagated dependencies: r-sp@2.2-0 r-snowfall@1.84-6.3 r-robustbase@0.99-4-1 r-quantreg@6.1 r-nlme@3.1-168 r-nleqslv@3.3.5 r-lmtest@0.9-40 r-fields@16.3.1 r-constrainedkriging@0.2-11 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=georob
Licenses: GPL 2+ LGPL 2.0+
Synopsis: Robust Geostatistical Analysis of Spatial Data
Description:

This package provides functions for efficiently fitting linear models with spatially correlated errors by robust (Kuensch et al. (2011) <doi:10.3929/ethz-a-009900710>) and Gaussian (Harville (1977) <doi:10.1080/01621459.1977.10480998>) (Restricted) Maximum Likelihood and for computing robust and customary point and block external-drift Kriging predictions (Cressie (1993) <doi:10.1002/9781119115151>), along with utility functions for variogram modelling in ad hoc geostatistical analyses, model building, model evaluation by cross-validation, (conditional) simulation of Gaussian processes (Davies and Bryant (2013) <doi:10.18637/jss.v055.i09>), unbiased back-transformation of Kriging predictions of log-transformed data (Cressie (2006) <doi:10.1007/s11004-005-9022-8>).

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
Total results: 34014