This package provides functions to build interactive dashboards combining the Tabler UI Kit with Shiny', making it easy to create professional-looking web applications. Tabler is fully responsive and compatible with all modern browsers. Offers customizable layouts and components built with HTML5 and CSS3'. The underlying Tabler (<https://github.com/tabler/tabler>) and Tabler Icons (<https://github.com/tabler/tabler-icons>) were pre-built from source to eliminate the need for Node.js and NPM on package installation.
Helper functions for MASCOTNUM / RT-UQ <https://uq.math.cnrs.fr/> algorithm template, for design of numerical experiments practice: algorithm template parser to support MASCOTNUM specification <https://github.com/MASCOTNUM/algorithms>, ask & tell decoupling injection (inspired by <https://search.r-project.org/CRAN/refmans/sensitivity/html/decoupling.html>) to use "crimped" algorithms (like uniroot(), optim(), ...) from outside R, basic template examples: Brent algorithm for 1 dim root finding and L-BFGS-B from base optim().
STARMA (Space-Time Autoregressive Moving Average) models are commonly utilized in modeling and forecasting spatiotemporal time series data. However, the intricate nonlinear dynamics observed in many space-time rainfall patterns often exceed the capabilities of conventional STARMA models. This R package enables the fitting of Time Delay Spatio-Temporal Neural Networks, which are adept at handling such complex nonlinear dynamics efficiently. For detailed methodology, please refer to Saha et al. (2020) <doi:10.1007/s00704-020-03374-2>.
This package provides a simple XML tree parser/generator. It includes functions to read XML files into R objects, get information out of and into nodes, and write R objects back to XML code. It's not as powerful as the XML package and doesn't aim to be, but for simple XML handling it could be useful. It was originally developed for the R GUI and IDE RKWard <https://rkward.kde.org>, to make plugin development easier.
This package provides a daemon for checking running and not running processes. It reads the /proc directory every n seconds and does a POSIX regexp on the process names. The daemon runs a user-provided script when it detects a program in the running processes, or an alternate script if it doesn't detect the program. The daemon can only be called by the root user, but can use sudo -u user in the process called if needed.
Oscope is a oscillatory genes identifier in unsynchronized single cell RNA-seq. This statistical pipeline has been developed to identify and recover the base cycle profiles of oscillating genes in an unsynchronized single cell RNA-seq experiment. The Oscope pipeline includes three modules: a sine model module to search for candidate oscillator pairs; a K-medoids clustering module to cluster candidate oscillators into groups; and an extended nearest insertion module to recover the base cycle order for each oscillator group.
This package provides an optimization method based on sequential quadratic programming for maximum likelihood estimation of the mixture proportions in a finite mixture model where the component densities are known. The algorithm is expected to obtain solutions that are at least as accurate as the state-of-the-art MOSEK interior-point solver, and they are expected to arrive at solutions more quickly when the number of samples is large and the number of mixture components is not too large.
This package provides classes and functions to work with biological sequences (DNA, RNA and amino acid sequences). Implements S3 infrastructure to work with biological sequences as described in Keck (2020) <doi:10.1111/2041-210X.13490>. Provides a collection of functions to perform biological conversion among classes (transcription, translation) and basic operations on sequences (detection, selection and replacement based on positions or patterns). The package also provides functions to import and export sequences from and to other package formats.
Working with reproducible reports or any other similar projects often require to run the script that builds the output file in a specified way. buildr can help you organize, modify and comfortably run those scripts. The package provides a set of functions that interactively guides you through the process and that are available as RStudio Addin, meaning you can set up the keyboard shortcuts, enabling you to choose and run the desired build script with one keystroke anywhere anytime.
Computes a structural similarity metric (after the style of MS-SSIM for images) for binary and categorical 2D and 3D images. Can be based on accuracy (simple matching), Cohen's kappa, Rand index, adjusted Rand index, Jaccard index, Dice index, normalized mutual information, or adjusted mutual information. In addition, has fast computation of Cohen's kappa, the Rand indices, and the two mutual informations. Implements the methods of Thompson and Maitra (2020) <doi:10.48550/arXiv.2004.09073>.
This package provides a workflow to generate and analyze signatures based on copy number data using non-negative matrix factorization (NMF) in an approach similar to that used in mutational signatures. It can be used to extract features from Copy number segment data and use that to find a subset of copy number signatures which can be further used to correlate with other relevant data. For more on NMF see Gaujoux (2013) <doi:10.1186/1471-2105-11-367>.
Bayesian and ML Emax model fitting, graphics and simulation for clinical dose response. The summary data from the dose response meta-analyses in Thomas, Sweeney, and Somayaji (2014) <doi:10.1080/19466315.2014.924876> and Thomas and Roy (2016) <doi:10.1080/19466315.2016.1256229> Wu, Banerjee, Jin, Menon, Martin, and Heatherington(2017) <doi:10.1177/0962280216684528> are included in the package. The prior distributions for the Bayesian analyses default to the posterior predictive distributions derived from these references.
This package provides a forecasting method that efficiently maps vast numbers of (scalar-valued) signals into an aggregate density forecast in a time-varying and computationally fast manner. The method proceeds in two steps: First, it transforms a predictive signal into a density forecast and, second, it combines the resulting candidate density forecasts into an ultimate aggregate density forecast. For a detailed explanation of the method, please refer to Adaemmer et al. (2025) <doi:10.1080/07350015.2025.2526424>.
Estimation of multivariate differences between two groups (e.g., multivariate sex differences) with regularized regression methods and predictive approach. See Ilmarinen et al. (2023) <doi:10.1177/08902070221088155>. Deconstructing difference score correlations (e.g., gender-equality paradox), see Ilmarinen & Lönnqvist (2024) <doi:10.1037/pspp0000508>. Includes also tools that help in understanding difference score reliability, conditional intra-class correlations, tail-dependency, and heterogeneity of variance estimates. Package development was supported by the Academy of Finland research grant 338891.
This tool was designed to assess the sensitivity of research findings to omitted variables when estimating causal effects using propensity score (PS) weighting. This tool produces graphics and summary results that will enable a researcher to quantify the impact an omitted variable would have on their results. Burgette et al. (2021) describe the methodology behind the primary function in this package, ov_sim. The method is demonstrated in Griffin et al. (2020) <doi:10.1016/j.jsat.2020.108075>.
Automatically adding pkg:: to a function, i.e. mutate() becomes dplyr::mutate(). It is up to the user to determine which packages should be used explicitly, whether to include base R packages or use the functionality on selected text, a file, or a complete directory. User friendly logging is provided in the RStudio Markers pane. Lives in the spirit of lintr and styler'. Can also be used for checking which packages are actually used in a project.
This package provides a set of tools that enables using OxCal from within R. OxCal (<https://c14.arch.ox.ac.uk/oxcal.html>) is a standard archaeological tool intended to provide 14C calibration and analysis of archaeological and environmental chronological information. OxcAAR allows simple calibration with Oxcal and plotting of the results as well as the execution of sophisticated ('OxCal') code and the import of the results of bulk analysis and complex Bayesian sequential calibration.
Loads and processes huge text corpora processed with the sally toolbox (<http://www.mlsec.org/sally/>). sally acts as a very fast preprocessor which splits the text files into tokens or n-grams. These output files can then be read with the PRISMA package which applies testing-based token selection and has some replicate-aware, highly tuned non-negative matrix factorization and principal component analysis implementation which allows the processing of very big data sets even on desktop machines.
This package provides a flexible framework combining variable screening and random projection techniques for fitting ensembles of predictive generalized linear models to high-dimensional data. Designed for extensibility, the package implements key techniques as S3 classes with user-friendly constructors, enabling easy integration and development of new procedures for high-dimensional applications. For more details see Parzer et al (2024a) <doi:10.48550/arXiv.2312.00130> and Parzer et al (2024b) <doi:10.48550/arXiv.2410.00971>.
Enables users to build ToxPi prioritization models and provides functionality within the grid framework for plotting ToxPi graphs. toxpiR allows for more customization than the ToxPi GUI (<https://toxpi.github.io/>) and integration into existing workflows for greater ease-of-use, reproducibility, and transparency. toxpiR package behaves nearly identically to the GUI; the package documentation includes notes about all differences. The vignettes download example files from <https://github.com/ToxPi/ToxPi-example-files>.
This package provides functions and data sets for actuarial science: modeling of loss distributions; risk theory and ruin theory; simulation of compound models, discrete mixtures and compound hierarchical models; credibility theory. It boasts support for many additional probability distributions to model insurance loss amounts and loss frequency: 19 continuous heavy tailed distributions; the Poisson-inverse Gaussian discrete distribution; zero-truncated and zero-modified extensions of the standard discrete distributions. It also supports phase-type distributions commonly used to compute ruin probabilities.
This package is for building isoscapes using mixed models and inferring the geographic origin of samples based on their isotopic ratios. This package is essentially a simplified interface to several other packages which implements a new statistical framework based on mixed models. It uses spaMM for fitting and predicting isoscapes, and assigning an organism's origin depending on its isotopic ratio. IsoriX also relies heavily on the package rasterVis for plotting the maps produced with terra using lattice'.
This package contains an implementation of a function digest() for the creation of hash digests of arbitrary R objects (using the md5, sha-1, sha-256, crc32, xxhash and murmurhash algorithms) permitting easy comparison of R language objects, as well as a function hmac() to create hash-based message authentication code.
Please note that this package is not meant to be deployed for cryptographic purposes for which more comprehensive (and widely tested) libraries such as OpenSSL should be used.
Writing interfaces to command line software is cumbersome. The cmdfun package provides a framework for building function calls to seamlessly interface with shell commands by allowing lazy evaluation of command line arguments. It also provides methods for handling user-specific paths to tool installs or secrets like API keys. Its focus is to equally serve package builders who wish to wrap command line software, and to help analysts stay inside R when they might usually leave to execute non-R software.