Promote access to the GESLA <https://gesla787883612.wordpress.com> (Global Extreme Sea Level Analysis) dataset, a higher-frequency sea-level record data from all over the world. It provides functions to download it entirely, or query subsets directly into R, without the need of downloading the full dataset. Also, it provides a built-in web-application, so that users can apply basic filters to select the data of interest, generating informative plots, and showing the selected sites.
Calculates various chance-corrected agreement coefficients (CAC) among 2 or more raters are provided. Among the CAC coefficients covered are Cohen's kappa, Conger's kappa, Fleiss kappa, Brennan-Prediger coefficient, Gwet's AC1/AC2 coefficients, and Krippendorff's alpha. Multiple sets of weights are proposed for computing weighted analyses. All of these statistical procedures are described in details in Gwet, K.L. (2014,ISBN:978-0970806284): "Handbook of Inter-Rater Reliability," 4th edition, Advanced Analytics, LLC.
This package performs multivariate meta-analysis for high-dimensional metabolomics data for integrating and collectively analysing individual-level data generated from multiple studies as well as for combining summary estimates. This approach accounts for correlation between outcomes, considers variability within and between studies, handles missing values and uses shrinkage estimation to allow for high dimensionality. A detailed vignette with example datasets and code to prepare data and analyses are available on <https://bookdown.org/a2delivera/MetaHD/>
.
Estimation of marginal hazard ratios in clustered failure time data. It implements the weighted generalized estimating equation approach based on a semiparametric marginal proportional hazards model (See Niu, Y. Peng, Y.(2015). "A new estimating equation approach for marginal hazard ratio estimation"), accounting for within-cluster correlations. 5 different correlation structures are supported. The package is designed for researchers in biostatistics and epidemiology who require accurate and efficient estimation methods for survival analysis in clustered data settings.
This package provides tools for importing and cleaning Experience Sampling Method (ESM) data collected via the m-Path platform. The goal is to provide with a few utility functions to be able to read and perform some common operations in ESM data collected through the m-Path platform (<https://m-path.io/landing/>). Functions include raw data handling, format standardization, and basic data checks, as well as to calculate the response rate in data from ESM studies.
This package contains the core methods for the evaluation of principal surrogates in a single clinical trial. Provides a flexible interface for defining models for the risk given treatment and the surrogate, the models for integration over the missing counterfactual surrogate responses, and the estimation methods. Estimated maximum likelihood and pseudo-score can be used for estimation, and the bootstrap for inference. A variety of post-estimation summary methods are provided, including print, summary, plot, and testing.
Quality control of chromatin immunoprecipitation libraries (ChIP-seq
) by quantitative polymerase chain reaction (qPCR
). This function calculates Enrichment value with respect to reference for each histone modification (specific to Vii7 software <http://www.thermofisher.com/ca/en/home/life-science/pcr/real-time-pcr/real-time-pcr-instruments/viia-7-real-time-pcr-system/viia-7-software.html>). This function is applicable to full panel of histone modifications described by International Human Epigenomic Consortium (IHEC).
Use behavioural variables to score activity and infer sleep from bouts of immobility. It is primarily designed to score sleep in fruit flies from Drosophila Activity Monitor (TriKinetics
) and Ethoscope data. It implements sleep scoring using the "five-minute rule" (Hendricks et al. (2000) <DOI:10.1016/S0896-6273(00)80877-6>), activity classification for Ethoscopes (Geissmann et al. (2017) <DOI:10.1371/journal.pbio.2003026>) and a new algorithm to detect when animals are dead.
Efficient R package for latent class analysis of recurrent events, based on the semiparametric multiplicative intensity model by Zhao et al. (2022) <doi:10.1111/rssb.12499>. SLCARE returns estimates for non-functional model parameters along with the associated variance estimates and p-values. Visualization tools are provided to depict the estimated functional model parameters and related functional quantities of interest. SLCARE also delivers a model checking plot to help assess the adequacy of the fitted model.
Calculates the minimal sample size for the Wilcoxon-Mann-Whitney test that is needed for a given power and two sided type I error rate. The method works for metric data with and without ties, count data, ordered categorical data, and even dichotomous data. But data is needed for the reference group to generate synthetic data for the treatment group based on a relevant effect. See Happ et al. (2019, <doi:10.1002/sim.7983>) for details.
This package is here to support legacy usages of it, but it should not be used for new code development. It provides a single function, plotScreen
, for visualising data in microtitre plate or slide format. As a better alternative for such functionality, please consider the platetools package on CRAN (https://cran.r-project.org/package=platetools and https://github.com/Swarchal/platetools), or ggplot2 (geom_raster, facet_wrap) as exemplified in the vignette of this package.
R-msigdb provides the Molecular Signatures Database in a R accessible objects. Signatures are stored in GeneSet
class objects form the GSEABase package and the entire database is stored in a GeneSetCollection
object. These data are then hosted on the ExperimentHub
. Data used in this package was obtained from the MSigDB
of the Broad Institute. Metadata for each gene set is stored along with the gene set in the GeneSet
class object.
Flexible parametric Accelerated Hazards (AH) regression models in overall and relative survival frameworks with 13 distinct Baseline Distributions. The AH Model can also be applied to lifetime data with crossed survival curves. Any user-defined parametric distribution can be fitted, given at least an R function defining the cumulative hazard and hazard rate functions. See Chen and Wang (2000) <doi:10.1080/01621459.2000.10474236>, and Lee (2015) <doi:10.1007/s10985-015-9349-5> for more details.
This package provides simplified access to the data from the Catalog of Theses and Dissertations of the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES, <https://catalogodeteses.capes.gov.br>) for the years 1987 through 2022. The dataset includes variables such as Higher Education Institution (institution), Area of Concentration (area), Graduate Program Name (program_name), Type of Work (type), Language of Work (language), Author Identification (author), Abstract (abstract), Advisor Identification (advisor), Development Region (region), State (state).
This package provides a non-drawing graphic device for benchmarking purpose. In order to properly benchmark graphic drawing code it is necessary to factor out the device implementation itself so that results are not related to the specific graphics device used during benchmarking. The devoid package implements a graphic device that accepts all the required calls from R's graphic engine but performs no action. Apart from benchmarking it is unlikely that this device has any practical use.
This package provides a Bayesian clustering method for replicated time series or replicated measurements from multiple experimental conditions, e.g., time-course gene expression data. It estimates the number of clusters directly from the data using a Dirichlet-process prior. See Fu, A. Q., Russell, S., Bray, S. and Tavare, S. (2013) Bayesian clustering of replicated time-course gene expression data with weak signals. The Annals of Applied Statistics. 7(3) 1334-1361. <doi:10.1214/13-AOAS650>.
Empirical Bayes ranking applicable to parallel-estimation settings where the estimated parameters are asymptotically unbiased and normal, with known standard errors. A mixture normal prior for each parameter is estimated using Empirical Bayes methods, subsequentially ranks for each parameter are simulated from the resulting joint posterior over all parameters (The marginal posterior densities for each parameter are assumed independent). Finally, experiments are ordered by expected posterior rank, although computations minimizing other plausible rank-loss functions are also given.
Allows to calculate the probabilities of occurrences of an event in a great number of repetitions of Bernoulli experiment, through the application of the local and the integral theorem of De Moivre Laplace, and the theorem of Poisson. Gives the possibility to show the results graphically and analytically, and to compare the results obtained by the application of the above theorems with those calculated by the direct application of the Binomial formula. Is basically useful for educational purposes.
This package provides a population genetic simulator, which is able to generate synthetic datasets for single-nucleotide polymorphisms (SNP) for multiple populations. The genetic distances among populations can be set according to the Fixation Index (Fst) as explained in Balding and Nichols (1995) <doi:10.1007/BF01441146>. This tool is able to simulate outlying individuals and missing SNPs can be specified. For Genome-wide association study (GWAS), disease status can be set in desired level according risk ratio.
Quantitative genetics tool supporting the modelling of multivariate genetic variance structures in quantitative data. It allows fitting different models through multivariate genetic-relationship-matrix (GRM) structural equation modelling (SEM) in unrelated individuals, using a maximum likelihood approach. Specifically, it combines genome-wide genotyping information, as captured by GRMs, with twin-research-based SEM techniques, St Pourcain et al. (2017) <doi:10.1016/j.biopsych.2017.09.020>, Shapland et al. (2020) <doi:10.1101/2020.08.14.251199>.
Linear and logistic regression models penalized with hierarchical shrinkage priors for selection of biomarkers (or more general variable selection), which can be fitted using Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>). It implements the horseshoe and regularized horseshoe priors (Piironen and Vehtari (2017) <doi:10.1214/17-EJS1337SI>), as well as the projection predictive selection approach to recover a sparse set of predictive biomarkers (Piironen, Paasiniemi and Vehtari (2020) <doi:10.1214/20-EJS1711>).
Functions, data sets, analyses and examples from the second edition of the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2008). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available. In addition, the package contains Sweave code for producing slides for selected chapters (see HSAUR2/inst/slides).
This package provides a forecasting method that efficiently maps vast numbers of (scalar-valued) signals into an aggregate density forecast in a time-varying and computationally fast manner. The method proceeds in two steps: First, it transforms a predictive signal into a density forecast and, second, it combines the resulting candidate density forecasts into an ultimate aggregate density forecast. For a detailed explanation of the method, please refer to Adaemmer et al. (2023) <doi:10.2139/ssrn.4342487>.
Short for linear binning', the linbin package provides functions for manipulating, binning, and plotting linearly referenced data. Although developed for data collected on river networks, it can be used with any interval or point data referenced to a 1-dimensional coordinate system. Flexible bin generation and batch processing makes it easy to compute and visualize variables at multiple scales, useful for identifying patterns within and between variables and investigating the influence of scale of observation on data interpretation.