Read a table of fixed width formatted data of different types into a data.frame for each type.
Data package containing a collection of multi-sample multi-group scRNA-seq datasets in SingleCellExperiment Bioconductor object format.
This package provides functions for the creation/generation and analysis of multilayer social networks <doi:10.18637/jss.v098.i08>.
Various utilities to manipulate multivariate polynomials. The package is almost completely superceded by the spray and mvp packages, which are much more efficient.
This package provides a method for multivariate ordinal data generation given marginal distributions and correlation matrix based on the methodology proposed by Demirtas (2006) <DOI:10.1080/10629360600569246>.
This package provides a data package containing public domain information on requests made by the MuckRock (https://www.muckrock.com/) project under the United States Freedom of Information Act.
This package contains auxiliary routines for influx software. This packages is not intended to be used directly. Influx was published here: Sokol et al. (2012) <doi:10.1093/bioinformatics/btr716>.
Spatio-temporal multivariate occupancy models can handle multiple species in occupancy models. This method for fitting such models is described in Hepler and Erhardt (2021) "A spatiotemporal model for multivariate occupancy data".
Emacs Muse (also known as Muse) is an authoring and publishing environment for Emacs. It simplifies the process of writing documents and publishing them to various output formats such as HTML, LaTeX, or PDF.
This package implements two versions of the algorithm namely: stochastic and batch. The package determines also the best number of clusters and offers to the user the best clustering scheme from different results.
Test for independence of two random vectors, learn and report the dependency structure. For more information, see Gorsky, Shai and Li Ma, Multiscale Fisher's Independence Test for Multivariate Dependence, Biometrika, accepted, January 2022.
Pseudo-random number generation for 11 multivariate distributions: Normal, t, Uniform, Bernoulli, Hypergeometric, Beta (Dirichlet), Multinomial, Dirichlet-Multinomial, Laplace, Wishart, and Inverted Wishart. The details of the method are explained in Demirtas (2004) <DOI:10.22237/jmasm/1099268340>.
Fits multi-way component models via alternating least squares algorithms with optional constraints. Fit models include N-way Canonical Polyadic Decomposition, Individual Differences Scaling, Multiway Covariates Regression, Parallel Factor Analysis (1 and 2), Simultaneous Component Analysis, and Tucker Factor Analysis.
Simultaneous tests and confidence intervals for general linear hypotheses in parametric models, including linear, generalized linear, linear mixed effects, and survival models. The package includes demos reproducing analyzes presented in the book "Multiple Comparisons Using R" (Bretz, Hothorn, Westfall, 2010, CRC Press).
MultiBaC is a strategy to correct batch effects from multiomic datasets distributed across different labs or data acquisition events. MultiBaC is able to remove batch effects across different omics generated within separate batches provided that at least one common omic data type is included in all the batches considered.
We introduce a high-dimensional multi-study robust factor model, which learns latent features and accounts for the heterogeneity among source. It could be used for analyzing heterogeneous RNA sequencing data. More details can be referred to Jiang et al. (2025) <doi:10.48550/arXiv.2506.18478>.
Network meta-analysis and network meta-regression models for aggregate data, individual patient data, and mixtures of both individual and aggregate data using multilevel network meta-regression as described by Phillippo et al. (2020) <doi:10.1111/rssa.12579>. Models are estimated in a Bayesian framework using Stan'.
This package implements likelihood-based estimation and diagnostics for multi-type recurrent event data with dynamic risk that depends on prior events and accommodates terminating events. Methods are described in Ghosh, Chan, Younes and Davis (2023) "A Dynamic Risk Model for Multitype Recurrent Events" <doi:10.1093/aje/kwac213>.
Multi-criteria design of experiments algorithm that simultaneously optimizes up to six different criteria ('I', Id', D', Ds', A and As'). The algorithm finds the optimal Pareto front and, if requested, selects a possible symmetrical design on it. The symmetrical design is selected based on two techniques: minimum distance with the Utopia point or the TOPSIS approach.
This is the C implementation of the ORCĪ language and terminal livecoding environment. It's designed to be power efficient. It can handle large files, even if your terminal is small.
Orca is not a synthesizer, but a flexible livecoding environment capable of sending MIDI, OSC, and UDP to your audio/visual interfaces like Ableton, Renoise, VCV Rack, or SuperCollider.
This package provides a collection of microRNAs/targets from external resources, including validated microRNA-target databases (miRecords, miRTarBase and TarBase), predicted microRNA-target databases (DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA and TargetScan) and microRNA-disease/drug databases (miR2Disease, Pharmaco-miR VerSe and PhenomiR).
This package provides a toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data.
This package provides tools to solve real-world problems with multiple classes classifications by computing the areas under ROC and PR curve via micro-averaging and macro-averaging. The vignettes of this package can be found via <https://github.com/WandeRum/multiROC>. The methodology is described in V. Van Asch (2013) <https://www.clips.uantwerpen.be/~vincent/pdf/microaverage.pdf> and Pedregosa et al. (2011) <http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html>.
Analysis of musical scales (& modes, grooves, etc.) in the vein of Sherrill 2025 <doi:10.1215/00222909-11595194>. The initials MCT in the package title refer to the article's title: "Modal Color Theory." Offers support for conventional musical pitch class set theory as developed by Forte (1973, ISBN: 9780300016109) and David Lewin (1987, ISBN: 9780300034936), as well as for the continuous geometries of Callender, Quinn, & Tymoczko (2008) <doi:10.1126/science.1153021>. Identifies structural properties of scales and calculates derived values (sign vector, color number, brightness ratio, etc.). Creates plots such as "brightness graphs" which visualize these properties.