This package provides a collection of functions that primarily produce graphics to aid in a Propensity Score Analysis (PSA). Functions include: cat.psa and box.psa to test balance within strata of categorical and quantitative covariates, circ.psa for a representation of the estimated effect size by stratum, loess.psa that provides a graphic and loess based effect size estimate, and various balance functions that provide measures of the balance achieved via a PSA in a categorical covariate.
This package provides infrastructure for psychometric modeling such as data classes (for item response data and paired comparisons), basic model fitting functions (for Bradley-Terry, Rasch, parametric logistic IRT, generalized partial credit, rating scale, multinomial processing tree models), extractor functions for different types of parameters (item, person, threshold, discrimination, guessing, upper asymptotes), unified inference and visualizations, and various datasets for illustration. It is intended as a common lightweight and efficient toolbox for psychometric modeling and a common building block for fitting psychometric mixture models in package psychomix
and trees based on psychometric models in package psychotree
.
This package provides functions which facilitate harmonization of data from multiple different datasets. Data harmonization involves taking data sources with differing values, creating coding instructions to create a harmonized set of values, then making those data modifications. psHarmonize
will assist with data modification once the harmonization instructions are written. Coding instructions are written by the user to create a "harmonization sheet". This sheet catalogs variable names, domains (e.g. clinical, behavioral, outcomes), provides R code instructions for mapping or conversion of data, specifies the variable name in the harmonized data set, and tracks notes. The package will then harmonize the source datasets according to the harmonization sheet to create a harmonized dataset. Once harmonization is finished, the package also has functions that will create descriptive statistics using RMarkdown'. Data Harmonization guidelines have been described by Fortier I, Raina P, Van den Heuvel ER, et al. (2017) <doi:10.1093/ije/dyw075>. Additional details of our R package have been described by Stephen JJ, Carolan P, Krefman AE, et al. (2024) <doi:10.1016/j.patter.2024.101003>.
This package contains functions useful for correlation theory, meta-analysis (validity-generalization), reliability, item analysis, inter-rater reliability, and classical utility.
Useful for preparing and cleaning data. It includes functions to center data, reverse coding, dummy code and effect code data, and more.
This package performs demographic, bifurcation and evolutionary analysis of physiologically structured population models, which is a class of models that consistently translates continuous-time models of individual life history to the population level. A model of individual life history has to be implemented specifying the individual-level functions that determine the life history, such as development and mortality rates and fecundity. M.A. Kirkilionis, O. Diekmann, B. Lisser, M. Nool, B. Sommeijer & A.M. de Roos (2001) <doi:10.1142/S0218202501001264>. O.Diekmann, M.Gyllenberg & J.A.J.Metz (2003) <doi:10.1016/S0040-5809(02)00058-8>. A.M. de Roos (2008) <doi:10.1111/j.1461-0248.2007.01121.x>.
An integrative toolbox of word embedding research that provides: (1) a collection of pre-trained static word vectors in the .RData compressed format <https://psychbruce.github.io/WordVector_RData.pdf>
; (2) a group of functions to process, analyze, and visualize word vectors; (3) a range of tests to examine conceptual associations, including the Word Embedding Association Test <doi:10.1126/science.aal4230> and the Relative Norm Distance <doi:10.1073/pnas.1720347115>, with permutation test of significance; and (4) a set of training methods to locally train (static) word vectors from text corpora, including Word2Vec <doi:10.48550/arXiv.1301.3781>
, GloVe
<doi:10.3115/v1/D14-1162>, and FastText
<doi:10.48550/arXiv.1607.04606>
.
This package provides a network-based systems biology tool for flexible identification of phenotype-specific subpathways in the cancer gene expression data with multiple categories (such as multiple subtype or developmental stages of cancer). Subtype Set Enrichment Analysis (SubSEA
) and Dynamic Changed Subpathway Analysis (DCSA) are developed to flexible identify subtype specific and dynamic changed subpathways respectively. The operation modes include extraction of subpathways from biological pathways, inference of subpathway activities in the context of gene expression data, identification of subtype specific subpathways with SubSEA
, identification of dynamic changed subpathways associated with the cancer developmental stage with DCSA, and visualization of the activities of resulting subpathways by using box plots and heat maps. Its capabilities render the tool could find the specific abnormal subpathways in the cancer dataset with multi-phenotype samples.
Multi-group (dynamical) structural equation models in combination with confirmatory network models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Allows for confirmatory testing and fit as well as exploratory model search.
Hybrid control design is a way to borrow information from external controls to augment concurrent controls in a randomized controlled trial and is expected to overcome the feasibility issue when adequate randomized controlled trials cannot be conducted. A major challenge in the hybrid control design is its inability to eliminate a prior-data conflict caused by systematic imbalances in measured or unmeasured confounding factors between patients in the concurrent treatment/control group and external controls. To prevent the prior-data conflict, a combined use of propensity score matching and Bayesian commensurate prior has been proposed in the context of hybrid control design. The propensity score matching is first performed to guarantee the balance in baseline characteristics, and then the Bayesian commensurate prior is constructed while discounting the information based on the similarity in outcomes between the concurrent and external controls. psBayesborrow
is a package to implement the propensity score matching and the Bayesian analysis with commensurate prior, as well as to conduct a simulation study to assess operating characteristics of the hybrid control design, where users can choose design parameters in flexible and straightforward ways depending on their own application.
Given an arbitrary set of spatial regions and road networks, generate a set of representative points, or pseudohouseholds, that can be used for travel burden analysis. Parallel processing is supported.
Presentation two independence tests for two-way, three-way and four-way contingency tables. These tests are: the modular test and the logarithmic minimum test. For details on this method see: Sulewski (2017) <doi:10.18778/0208-6018.330.04>, Sulewski (2018) <doi:10.1080/02664763.2018.1424122>, Sulewski (2019) <doi:10.2478/bile-2019-0003>, Sulewski (2021) <doi:10.1080/00949655.2021.1908286>.