Bayesian Beta Regression, adapted for bounded discrete responses, commonly seen in survey responses. Estimation is done via Markov Chain Monte Carlo sampling, using a Gibbs wrapper around univariate slice sampler (Neal (2003) <DOI:10.1214/aos/1056562461>), as implemented in the R package MfUSampler
(Mahani and Sharabiani (2017) <DOI: 10.18637/jss.v078.c01>).
Fitting and testing multi-attribute probabilistic choice models, especially the Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952 <doi:10.1093/biomet/39.3-4.324>; Luce, 1959), elimination-by-aspects (EBA) models (Tversky, 1972 <doi:10.1037/h0032955>), and preference tree (Pretree) models (Tversky & Sattath, 1979 <doi:10.1037/0033-295X.86.6.542>).
This package provides a nonparametric smoothed kernel estimator for the future conditional hazard rate function when time-dependent covariates are present, a bandwidth selector for the estimator's implementation and pointwise and uniform confidence bands. Methods used in the package refer to Bagkavos, Isakson, Mammen, Nielsen and Proust-Lima (2025) <doi:10.1093/biomet/asaf008>.
Modern model-based geostatistics for point-referenced data. This package provides a simple interface to run spatial machine learning models and geostatistical models that estimate a continuous (raster) surface from point-referenced outcomes and, optionally, a set of raster covariates. The package also includes functions to summarize raster outcomes by (polygon) region while preserving uncertainty.
This package provides functions and example data to teach and increase the reproducibility of the methods and code underlying the Propensity to Cycle Tool (PCT), a research project and web application hosted at <https://www.pct.bike/>. For an academic paper on the methods, see Lovelace et al (2017) <doi:10.5198/jtlu.2016.862>.
The code computes the structural intervention distance (SID) between a true directed acyclic graph (DAG) and an estimated DAG. Definition and details about the implementation can be found in J. Peters and P. Bühlmann: "Structural intervention distance (SID) for evaluating causal graphs", Neural Computation 27, pages 771-799, 2015 <doi:10.1162/NECO_a_00708>.
Sample Generation by Replacement simulations (SGR; Lombardi & Pastore, 2014; Pastore & Lombardi, 2014). The package can be used to perform fake data analysis according to the sample generation by replacement approach. It includes functions for making simple inferences about discrete/ordinal fake data. The package allows to study the implications of fake data for empirical results.
Deals with Young tableaux (field of combinatorics). For standard Young tabeaux, performs enumeration, counting, random generation, the Robinson-Schensted correspondence, and conversion to and from paths on the Young lattice. Also performs enumeration and counting of semistandard Young tableaux, enumeration of skew semistandard Young tableaux, enumeration of Gelfand-Tsetlin patterns, and computation of Kostka numbers.
Does uniformly most powerful (UMP) and uniformly most powerful unbiased (UMPU) tests. At present only distribution implemented is binomial distribution. Also does fuzzy tests and confidence intervals (following Geyer and Meeden, 2005, <doi:10.1214/088342305000000340>) for the binomial distribution (one-tailed procedures based on UMP test and two-tailed procedures based on UMPU test).
This package is an implementation of extensions to Freund and Schapire's AdaBoost algorithm and Friedman's gradient boosting machine. It includes regression methods for least squares, absolute loss, t-distribution loss, quantile regression, logistic, multinomial logistic, Poisson, Cox proportional hazards partial likelihood, AdaBoost exponential loss, Huberized hinge loss, and Learning to Rank measures (LambdaMart).
This package provides a suite of functions to help ease the use of the d3.js visualization library in R. These helpers include htmltools::htmlDependency
functions, hierarchy builders, and conversion tools for partykit
, igraph
, table
, and data.frame
R objects into the JSON format that the d3.js library expects.
This package provides miscellaneous functions to help customize ggplot2 objects. High-level functions are provided to post-process ggplot2 layouts and allow alignment between plot panels, as well as setting panel sizes to fixed values. Other functions include a custom geom
, and helper functions to enforce symmetric scales or add tags to facetted plots.
Create aliases for other R names or arbitrarily complex R expressions. Accessing the alias acts as-if the aliased expression were invoked instead, and continuously reflects the current value of that expression: updates to the original expression will be reflected in the alias; and updates to the alias will automatically be reflected in the original expression.
An R console utility that lets you ask R related questions to the OpenAI
large language model. It can answer how-to()
questions by providing code, and whatis()
questions by explaining what given code does. You must provision your own key for the OpenAI
API <https://platform.openai.com/docs/api-reference>.
Fit composite Gaussian process (CGP) models as described in Ba and Joseph (2012) "Composite Gaussian Process Models for Emulating Expensive Functions", Annals of Applied Statistics. The CGP model is capable of approximating complex surfaces that are not second-order stationary. Important functions in this package are CGP, print.CGP, summary.CGP, predict.CGP and plotCGP
.
This package provides a set of core functions for handling medical device event data in the context of post-market surveillance, pharmacovigilance, signal detection and trending, and regulatory reporting. Primary inputs are data on events by device and data on exposures by device. Outputs include: standardized device-event and exposure datasets, defined analyses, and time series.
An implementation of semi-supervised regression methods including self-learning and co-training by committee based on Hady, M. F. A., Schwenker, F., & Palm, G. (2009) <doi:10.1007/978-3-642-04274-4_13>. Users can define which set of regressors to use as base models from the caret package, other packages, or custom functions.
This package is built to perform GWAS analysis for non-Gaussian data using BG2. The BG2 method uses penalized quasi-likelihood along with nonlocal priors in a two step manner to identify SNPs in GWAS analysis. The research related to this package was supported in part by National Science Foundation awards DMS 1853549 and DMS 2054173.
This package implements various procedures for finding multiple change-points. Two methods make use of dynamic programming and pruning, with no distributional assumptions other than the existence of certain absolute moments in one method. Hierarchical and exact search methods are included. All methods return the set of estimated change-points as well as other summary information.
rfcat
is a program to control some radio dongles operating in ISM bands.
Supported dongles:
YARD Stick One
cc1111emk
chronos watch dongle
imme (limited support)
To install the rfcat udev rules, you must extend udev-service-type
with this package. E.g.: (udev-rules-service 'rfcat rfcat)
Rsync is a fast and versatile file copying tool. It can copy locally, to/from another host over any remote shell, or to/from a remote rsync daemon. Its delta-transfer algorithm reduces the amount of data sent over the network by sending only the differences between the source files and the existing files in the destination.
Package contains most of the popular internal and external cluster validation methods ready to use for the most of the outputs produced by functions coming from package "cluster". Package contains also functions and examples of usage for cluster stability approach that might be applied to algorithms implemented in "cluster" package as well as user defined clustering algorithms.
Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information. The current version supports conditional MDS (based on either conditional SMACOF in Bui (2021) <arXiv:2111.13646>
or closed-form solution in Bui (2022) <doi:10.1016/j.patrec.2022.11.007>) and conditional ISOMAP in Bui (2021) <arXiv:2111.13646>
.
Containing the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA
), Delta Amplitude Detrended Cross-Correlation Coefficient (DeltarhoDCCA
), log amplitude Detrended Fluctuation Analysis (DeltalogDFA
), and the Activity Balance Index, it also includes two DFA automatic methods for identifying crossover points and a Deltalog automatic method for identifying reference channels.