For surface energy models and estimation of solar positions and components with varying topography, time and locations. The functions calculate solar top-of-atmosphere, open, diffuse and direct components, atmospheric transmittance and diffuse factors, day length, sunrise and sunset, solar azimuth, zenith, altitude, incidence, and hour angles, earth declination angle, equation of time, and solar constant. Details about the methods and equations are explained in Seyednasrollah, Bijan, Mukesh Kumar, and Timothy E. Link. On the role of vegetation density on net snow cover radiation at the forest floor. Journal of Geophysical Research: Atmospheres 118.15 (2013): 8359-8374, <doi:10.1002/jgrd.50575>.
It allows for mapping proportions and indicators defined on the unit interval. It implements Beta-based small area methods comprising the classical Beta regression models, the Flexible Beta model and Zero and/or One Inflated extensions (Janicki 2020 <doi:10.1080/03610926.2019.1570266>). Such methods, developed within a Bayesian framework through Stan <https://mc-stan.org/>, come equipped with a set of diagnostics and complementary tools, visualizing and exporting functions. A Shiny application with a user-friendly interface can be launched to further simplify the process. For further details, refer to De Nicolò and Gardini (2024 <doi:10.18637/jss.v108.i01>).
The NetSAM (Network Seriation and Modularization) package takes an edge-list representation of a weighted or unweighted network as an input, performs network seriation and modularization analysis, and generates as files that can be used as an input for the one-dimensional network visualization tool NetGestalt (http://www.netgestalt.org) or other network analysis. The NetSAM package can also generate correlation network (e.g. co-expression network) based on the input matrix data, perform seriation and modularization analysis for the correlation network and calculate the associations between the sample features and modules or identify the associated GO terms for the modules.
This package provides many easy-to-use methods to analyze and visualize tomo-seq data. The tomo-seq technique is based on cryosectioning of tissue and performing RNA-seq on consecutive sections. (Reference: Kruse F, Junker JP, van Oudenaarden A, Bakkers J. Tomo-seq: A method to obtain genome-wide expression data with spatial resolution. Methods Cell Biol. 2016;135:299-307. doi:10.1016/bs.mcb.2016.01.006) The main purpose of the package is to find zones with similar transcriptional profiles and spatially expressed genes in a tomo-seq sample. Several visulization functions are available to create easy-to-modify plots.
This package provides a powerful tool for automating the early detection of seasonal epidemic onsets in time series data. It offers the ability to estimate growth rates across consecutive time intervals, calculate the sum of cases (SoC) within those intervals, and estimate seasonal onsets within user defined seasons. With use of a disease-specific threshold it also offers the possibility to estimate seasonal onset of epidemics. Additionally it offers the ability to estimate burden levels for seasons based on historical data. It is aimed towards epidemiologists, public health professionals, and researchers seeking to identify and respond to seasonal epidemics in a timely fashion.
Flags and checks occurrence data that are in Darwin Core format. The package includes generic functions and data as well as some that are specific to bees. This package is meant to build upon and be complimentary to other excellent occurrence cleaning packages, including bdc and CoordinateCleaner'. This package uses datasets from several sources and particularly from the Discover Life Website, created by Ascher and Pickering (2020). For further information, please see the original publication and package website. Publication - Dorey et al. (2023) <doi:10.1101/2023.06.30.547152> and package website - Dorey et al. (2023) <https://github.com/jbdorey/BeeBDC>.
This package implements weighted estimation in Cox regression as proposed by Schemper, Wakounig and Heinze (Statistics in Medicine, 2009, <doi:10.1002/sim.3623>) and as described in Dunkler, Ploner, Schemper and Heinze (Journal of Statistical Software, 2018, <doi:10.18637/jss.v084.i02>). Weighted Cox regression provides unbiased average hazard ratio estimates also in case of non-proportional hazards. Approximated generalized concordance probability an effect size measure for clear-cut decisions can be obtained. The package provides options to estimate time-dependent effects conveniently by including interactions of covariates with arbitrary functions of time, with or without making use of the weighting option.
This package provides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the econet package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette <doi:10.18637/jss.v102.i08>.
Processing tools to create emissions for use in numerical air quality models. Emissions can be calculated both using emission factors and activity data (Schuch et al 2018) <doi:10.21105/joss.00662> or using pollutant inventories (Schuch et al., 2018) <doi:10.30564/jasr.v1i1.347>. Functions to process individual point emissions, line emissions and area emissions of pollutants are available as well as methods to incorporate alternative data for Spatial distribution of emissions such as satellite images (Gavidia-Calderon et. al, 2018) <doi:10.1016/j.atmosenv.2018.09.026> or openstreetmap data (Andrade et al, 2015) <doi:10.3389/fenvs.2015.00009>.
Launches a shiny application generating code to view tables in several ways, import/export tables, modify tables, make some basic graphics. IGoR is a graphic user interface designed to help beginners using simple functions around table management and exploration. Inspired by Rcmdr', IGoR is a code generator that, with simple inputs under a Shiny application, provides R code mainly built around the tidyverse or some packages in the direct line of the Mosaic project: the rio and ggformula packages. The generated code doesn't depend on IGoR and can be manually modified by the user or copied elsewhere.
This package provides functions of marginal mean and quantile regression models are used to analyze environmental exposure and biomonitoring data with repeated measurements and non-detects (i.e., values below the limit of detection (LOD)), as well as longitudinal exposure data that include non-detects and time-dependent covariates. For more details see Chen IC, Bertke SJ, Curwin BD (2021) <doi:10.1038/s41370-021-00345-1>, Chen IC, Bertke SJ, Estill CF (2024) <doi:10.1038/s41370-024-00640-7>, Chen IC, Bertke SJ, Dahm MM (2024) <doi:10.1093/annweh/wxae068>, and Chen IC (2025) <doi:10.1038/s41370-025-00752-8>.
Fits Bayesian regularized varying coefficient models with the Nonparametric Varying Coefficient Spike-and-Slab Lasso (NVC-SSL) introduced by Bai et al. (2023) <https://jmlr.org/papers/volume24/20-1437/20-1437.pdf>. Functions to fit frequentist penalized varying coefficients are also provided, with the option of employing the group lasso penalty of Yuan and Lin (2006) <doi:10.1111/j.1467-9868.2005.00532.x>, the group minimax concave penalty (MCP) of Breheny and Huang <doi:10.1007/s11222-013-9424-2>, or the group smoothly clipped absolute deviation (SCAD) penalty of Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>.
This package provides functions to construct confidence intervals for the Overlap Coefficient (OVL). OVL measures the similarity between two distributions through the overlapping area of their distribution functions. Given its intuitive description and ease of visual representation by the straightforward depiction of the amount of overlap between the two corresponding histograms based on samples of measurements from each one of the two distributions, the development of accurate methods for confidence interval construction can be useful for applied researchers. Implements methods based on the work of Franco-Pereira, A.M., Nakas, C.T., Reiser, B., and Pardo, M.C. (2021) <doi:10.1177/09622802211046386>.
The nonparametric trend and its derivatives in equidistant time series (TS) with short-memory stationary errors can be estimated. The estimation is conducted via local polynomial regression using an automatically selected bandwidth obtained by a built-in iterative plug-in algorithm or a bandwidth fixed by the user. A Nadaraya-Watson kernel smoother is also built-in as a comparison. With version 1.1.0, a linearity test for the trend function, forecasting methods and backtesting approaches are implemented as well. The smoothing methods of the package are described in Feng, Y., Gries, T., and Fritz, M. (2020) <doi:10.1080/10485252.2020.1759598>.
Estimation of robust estimators for multi-group and spatial data including the casewise robust Spatially Smoothed Minimum Regularized Determinant (ssMRCD) estimator and its usage for local outlier detection as described in Puchhammer and Filzmoser (2023) <doi:10.1080/10618600.2023.2277875> as well as for sparse robust PCA for multi-source data described in Puchhammer, Wilms and Filzmoser (2024) <doi:10.48550/arXiv.2407.16299>. Moreover, a cellwise robust multi-group Gaussian mixture model (MG-GMM) is implemented as described in Puchhammer, Wilms and Filzmoser (2024) <doi:10.48550/arXiv.2504.02547>. Included are also complementary visualization and parameter tuning tools.
AUCell identifies cells with active gene sets (e.g. signatures, gene modules, etc) in single-cell RNA-seq data. AUCell uses the Area Under the Curve (AUC) to calculate whether a critical subset of the input gene set is enriched within the expressed genes for each cell. The distribution of AUC scores across all the cells allows exploring the relative expression of the signature. Since the scoring method is ranking-based, AUCell is independent of the gene expression units and the normalization procedure. In addition, since the cells are evaluated individually, it can easily be applied to bigger datasets, subsetting the expression matrix if needed.
Composite likelihood parameter estimate and asymptotic covariance matrix are calculated for the spatial ordinal data with replications, where spatial ordinal response with covariate and both spatial exponential covariance within subject and independent and identically distributed measurement error. Parameter estimation can be performed by either solving the gradient function or maximizing composite log-likelihood. Parametric bootstrapping is used to estimate the Godambe information matrix and hence the asymptotic standard error and covariance matrix with parallel processing option. Moreover, the proposed surrogate residual, which extends the results of Liu and Zhang (2017) <doi: 10.1080/01621459.2017.1292915>, can act as a useful tool for model diagnostics.
Tool to assessing whether the results of a study could be influenced by collinearity. Simulations under a given hypothesized truth regarding effects of an exposure on the outcome are used and the resulting curves of lagged effects are visualized. A user's manual is provided, which includes detailed examples (e.g. a cohort study looking for windows of vulnerability to air pollution, a time series study examining the linear association of air pollution with hospital admissions, and a time series study examining the non-linear association between temperature and mortality). The methods are described in Basagana and Barrera-Gomez (2021) <doi:10.1093/ije/dyab179>.
Serves as a platform for published fluorometric enzyme assay protocols. ezmmek calibrates, calculates, and plots enzyme activities as they relate to the transformation of synthetic substrates. At present, ezmmek implements two common protocols found in the literature, and is modular to accommodate additional protocols. Here, these protocols are referred to as the In-Sample Calibration (Hoppe, 1983; <doi:10.3354/meps011299>) and In-Buffer Calibration (German et al., 2011; <doi:10.1016/j.soilbio.2011.03.017>). protocols. By containing multiple protocols, ezmmek aims to stimulate discussion about how to best optimize fluorometric enzyme assays. A standardized approach would make studies more comparable and reproducible.
This package provides a novel statistical model to detect the joint genetic and dynamic gene-environment (GxE) interaction with continuous traits in genetic association studies. It uses varying-coefficient models to account for different GxE trajectories, regardless whether the relationship is linear or not. The package includes one function, GxEtest(), to test a single genetic variant (e.g., a single nucleotide polymorphism or SNP), and another function, GxEscreen(), to test for a set of genetic variants. The method involves a likelihood ratio test described in Crainiceanu, C. M., and Ruppert, D. (2004) <doi:10.1111/j.1467-9868.2004.00438.x>.
This package provides a method for identifying responses to experimental stimulation in mass or flow cytometry that uses high dimensional analysis of measured parameters and can be performed with an end-to-end unsupervised approach. In the context of in vitro stimulation assays where high-parameter cytometry was used to monitor intracellular response markers, using cell populations annotated either through automated clustering or manual gating for a combined set of stimulated and unstimulated samples, HDStIM labels cells as responding or non-responding. The package also provides auxiliary functions to rank intracellular markers based on their contribution to identifying responses and generating diagnostic plots.
Data sets on various litter types like beach litter, riverain litter, floating litter, and seafloor litter are rapidly growing. This package offers a simple user interface to analyse these litter data in a consistent and reproducible way. It also provides functions to facilitate several kinds of litter analysis, e.g., trend analysis, power analysis, and baseline analysis. Under the hood, these functions are also used by the user interface. See Schulz et al. (2019) <doi:10.1016/j.envpol.2019.02.030> for details. MS-Windows users are advised to run litteR in RStudio'. See our vignette: Installation manual for RStudio and litteR'.
This package contains functions for mapping odds ratios, hazard ratios, or other effect estimates using individual-level data such as case-control study data, using generalized additive models (GAMs) or Cox models for smoothing with a two-dimensional predictor (e.g., geolocation or exposure to chemical mixtures) while adjusting linearly for confounding variables, using methods described by Kelsall and Diggle (1998), Webster at al. (2006), and Bai et al. (2020). Includes convenient functions for mapping point estimates and confidence intervals, efficient control sampling, and permutation tests for the null hypothesis that the two-dimensional predictor is not associated with the outcome variable (adjusting for confounders).
Enables computation of epidemiological statistics, including those where counts or mortality rates of the reference population are used. Currently supported: excess hazard models (Dickman, Sloggett, Hills, and Hakulinen (2012) <doi:10.1002/sim.1597>), rates, mean survival times, relative/net survival (in particular the Ederer II (Ederer and Heise (1959)) and Pohar Perme (Pohar Perme, Stare, and Esteve (2012) <doi:10.1111/j.1541-0420.2011.01640.x>) estimators), and standardized incidence and mortality ratios, all of which can be easily adjusted for by covariates such as age. Fast splitting and aggregation of Lexis objects (from package Epi') and other computations achieved using data.table'.