This package lets you record test suite HTTP requests and replay them during future runs. It works by hooking into the webmockr R package for matching HTTP requests by various rules, and then caching real HTTP responses on disk in cassettes. Subsequent HTTP requests matching any previous requests in the same cassette use a cached HTTP response.
Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information. The current version supports conditional MDS (based on either conditional SMACOF in Bui (2021) <arXiv:2111.13646> or closed-form solution in Bui (2022) <doi:10.1016/j.patrec.2022.11.007>) and conditional ISOMAP in Bui (2021) <arXiv:2111.13646>.
Containing the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA), Delta Amplitude Detrended Cross-Correlation Coefficient (DeltarhoDCCA), log amplitude Detrended Fluctuation Analysis (DeltalogDFA), and the Activity Balance Index, it also includes two DFA automatic methods for identifying crossover points and a Deltalog automatic method for identifying reference channels.
This package implements several methods for testing the variance component parameter in regression models that contain kernel-based random effects, including a maximum of adjusted scores test. Several kernels are supported, including a profile hidden Markov model mutual information kernel for protein sequence. This package is described in Fong et al. (2015) <DOI:10.1093/biostatistics/kxu056>.
This package contains LUE_BIOMASS(),LUE_BIOMASS_VPD(), LUE_YIELD() and LUE_YIELD_VPD() to estimate aboveground biomass and crop yield firstly by calculating the Absorbed Photosynthetically Active Radiation (APAR) and secondly the actual values of light use efficiency with and without vapour presure deficit Shi et al.(2007) <doi:10.2134/agronj2006.0260>.
This package provides functions for the creation, evaluation and test of decision models based in Multi Attribute Utility Theory (MAUT). Can process and evaluate local risk aversion utilities for a set of indexes, compute utilities and weights for the whole decision tree defining the decision model and simulate weights employing Dirichlet distributions under addition constraints in weights.
This package implements the algorithm in Chen, Wang and Samworth (2020) <arxiv:2003.03668> for online detection of sudden mean changes in a sequence of high-dimensional observations. It also implements methods by Mei (2010) <doi:10.1093/biomet/asq010>, Xie and Siegmund (2013) <doi:10.1214/13-AOS1094> and Chan (2017) <doi:10.1214/17-AOS1546>.
Constraint-based causal discovery using the PC algorithm while accounting for a partial node ordering, for example a partial temporal ordering when the data were collected in different waves of a cohort study. Andrews RM, Foraita R, Didelez V, Witte J (2021) <arXiv:2108.13395> provide a guide how to use tpc to analyse cohort data.
This package provides functions for uniform sampling of the environmental space, designed to assist species distribution modellers in gathering ecologically relevant pseudo-absence data. The method ensures balanced representation of environmental conditions and helps reduce sampling bias in model calibration. Based on the framework described by Da Re et al. (2023) <doi:10.1111/2041-210X.14209>.
This is a package for regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. The rms package is a collection of functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models, ordinal models for continuous Y with a variety of distribution families, and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. The package works with almost any regression model, but it was especially written to work with binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression.
R/qtl is an extension library for the R statistics system. It is used to analyze experimental crosses for identifying genes contributing to variation in quantitative traits (so-called quantitative trait loci, QTLs).
Using a hidden Markov model, R/qtl estimates genetic maps, to identify genotyping errors, and to perform single-QTL and two-QTL, two-dimensional genome scans.
Ren'Py is a visual novel engine that helps you use words, images, and sounds to tell interactive stories that run on computers and mobile devices. These can be both visual novels and life simulation games. The easy to learn script language allows anyone to efficiently write large visual novels, while its Python scripting is enough for complex simulation games.
The Parallel Mixed Model (PMM) approach is suitable for hit selection and cross-comparison of RNAi screens generated in experiments that are performed in parallel under several conditions. For example, we could think of the measurements or readouts from cells under RNAi knock-down, which are infected with several pathogens or which are grown from different cell lines.
The FAS package implements the bootstrap method for the tuning parameter selection and tuning-free inference on sparse regression coefficient vectors. Currently, the test could be applied to linear and factor-augmented sparse regressions, see Lederer & Vogt (2021, JMLR) <https://www.jmlr.org/papers/volume22/20-539/20-539.pdf> and Beyhum & Striaukas (2023) <arXiv:2307.13364>.
Implemented are the Wald-type statistic, a permuted version thereof as well as the ANOVA-type statistic for general factorial designs, even with non-normal error terms and/or heteroscedastic variances, for crossed designs with an arbitrary number of factors and nested designs with up to three factors. Friedrich et al. (2017) <doi:10.18637/jss.v079.c01>.
This package provides univariate and indexed (multivariate) nonparametric smoothed kernel estimators for the future conditional hazard rate function when time-dependent covariates are present, a bandwidth selector for the estimator's implementation and pointwise and uniform confidence bands. Methods used in the package refer to Bagkavos, Isakson, Mammen, Nielsen and Proust-Lima (2025) <doi:10.1093/biomet/asaf008>.
Identifying latent genetic interactions in genome-wide association studies using the Latent Interaction Testing (LIT) framework. LIT is a flexible kernel-based approach that leverages information across multiple traits to detect latent genetic interactions without specifying or observing the interacting variable (e.g., environment). LIT accepts standard PLINK files as inputs to analyze large genome-wide association studies.
Primarily, the qcv package computes key indices related to the Quantifying Construct Validity procedure (QCV; Westen & Rosenthal, 2003 <doi:10.1037/0022-3514.84.3.608>; see also Furr & Heuckeroth, in press). The qcv() function is the heart of the qcv package, but additional functions in the package provide useful ancillary information related to the QCV procedure.
Convert a time series of observations to a time series of standardised indices that can be used to monitor variables on a common and probabilistically interpretable scale. The indices can be aggregated and rescaled to different time scales, visualised using plot capabilities, and calculated using a range of distributions. This includes flexible non-parametric and non-stationary methods.
This package provides functions for point and interval estimation in error-in-variables models via total least squares or generalized total least squares method. See Golub and Van Loan (1980) <doi:10.1137/0717073>, Gleser (1981) <https://www.jstor.org/stable/2240867>, Ivan Markovsky and Huffel (2007) <doi:10.1016/j.sigpro.2007.04.004> for more information.
This package provides a robust computational framework for analyzing complex multimodal data. Extends existing state-dependent models to account for diverse data streams, addressing challenges such as varying temporal scales and learner characteristics to improve the robustness and interpretability of findings. For methodological details, see Shaffer, Wang, and Ruis (2025) "Transmodal Analysis" <doi:10.18608/jla.2025.8423>.
Quickly create, run, and report structural equation models, and twin models. See ?umx for help, and umx_open_CRAN_page("umx") for NEWS. Timothy C. Bates, Michael C. Neale, Hermine H. Maes, (2019). umx: A library for Structural Equation and Twin Modelling in R. Twin Research and Human Genetics, 22, 27-41. <doi:10.1017/thg.2019.2>.
This package provides a flexible method for modeling cumulative effects of time-varying exposures, weighted according to their relative proximity in time, and represented by time-dependent covariates. The current implementation estimates the weight function in the Cox proportional hazards model. The function that assigns weights to doses taken in the past is estimated using cubic regression splines.
Assists in the whole process of designing and evaluating Randomized Control Trials. Robust treatment assignment by strata/blocks, that handles misfits; Power calculations of the minimum detectable treatment effect or minimum populations; Balance tables of T-test of covariates; Balance Regression: (treatment ~ all x variables) with F-test of null model; Impact_evaluation: Impact evaluation regressions. This function gives you the option to include control_vars, fixed effect variables, cluster variables (for robust SE), multiple endogenous variables and multiple heterogeneous variables (to test treatment effect heterogeneity) summary_statistics: Function that creates a summary statistics table with statistics rank observations in n groups: Creates a factor variable with n groups. Each group has a min and max label attach to each category. Athey, Susan, and Guido W. Imbens (2017) <arXiv:1607.00698>.