_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-dppack 0.2.2
Propagated dependencies: r-rmutil@1.1.10 r-rdpack@2.6.4 r-r6@2.6.1 r-nloptr@2.2.1 r-mass@7.3-65 r-ggplot2@4.0.1 r-e1071@1.7-16 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DPpack
Licenses: GPL 3 FSDG-compatible
Synopsis: Differentially Private Statistical Analysis and Machine Learning
Description:

An implementation of common statistical analysis and models with differential privacy (Dwork et al., 2006a) <doi:10.1007/11681878_14> guarantees. The package contains, for example, functions providing differentially private computations of mean, variance, median, histograms, and contingency tables. It also implements some statistical models and machine learning algorithms such as linear regression (Kifer et al., 2012) <https://proceedings.mlr.press/v23/kifer12.html> and SVM (Chaudhuri et al., 2011) <https://jmlr.org/papers/v12/chaudhuri11a.html>. In addition, it implements some popular randomization mechanisms, including the Laplace mechanism (Dwork et al., 2006a) <doi:10.1007/11681878_14>, Gaussian mechanism (Dwork et al., 2006b) <doi:10.1007/11761679_29>, analytic Gaussian mechanism (Balle & Wang, 2018) <https://proceedings.mlr.press/v80/balle18a.html>, and exponential mechanism (McSherry & Talwar, 2007) <doi:10.1109/FOCS.2007.66>.

r-windac 1.2.10
Propagated dependencies: r-sf@1.0-23 r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=windAC
Licenses: GPL 2+ GPL 3+
Synopsis: Area Correction Methods
Description:

Post-construction fatality monitoring studies at wind facilities are based on data from searches for bird and bat carcasses in plots beneath turbines. Bird and bat carcasses can fall outside of the search plot. Bird and bat carcasses from wind turbines often fall outside of the searched area. To compensate, area correction (AC) estimations are calculated to estimate the percentage of fatalities that fall within the searched area versus those that fall outside of it. This package provides two likelihood based methods and one physics based method (Hull and Muir (2010) <doi:10.1080/14486563.2010.9725253>, Huso and Dalthorp (2014) <doi:10.1002/jwmg.663>) to estimate the carcass fall distribution. There are also functions for calculating the proportion of area searched within one unit annuli, log logistic distribution functions, and truncated distribution functions.

r-bigmds 3.0.0
Propagated dependencies: r-svd@0.5.8 r-pracma@2.4.6 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/pachoning/bigmds
Licenses: Expat
Synopsis: Multidimensional Scaling for Big Data
Description:

MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix of dimensions n à n. When n is large, classical algorithms suffer from computational problems and MDS configuration can not be obtained. With this package, we address these problems by means of six algorithms, being two of them original proposals: - Landmark MDS proposed by De Silva V. and JB. Tenenbaum (2004). - Interpolation MDS proposed by Delicado P. and C. Pachón-Garcà a (2021) <arXiv:2007.11919> (original proposal). - Reduced MDS proposed by Paradis E (2018). - Pivot MDS proposed by Brandes U. and C. Pich (2007) - Divide-and-conquer MDS proposed by Delicado P. and C. Pachón-Garcà a (2021) <arXiv:2007.11919> (original proposal). - Fast MDS, proposed by Yang, T., J. Liu, L. McMillan and W. Wang (2006).

r-csmgmm 0.4.0
Propagated dependencies: r-rlang@1.1.6 r-mvtnorm@1.3-3 r-magrittr@2.0.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=csmGmm
Licenses: GPL 3
Synopsis: Conditionally Symmetric Multidimensional Gaussian Mixture Model
Description:

This package implements the conditionally symmetric multidimensional Gaussian mixture model (csmGmm) for large-scale testing of composite null hypotheses in genetic association applications such as mediation analysis, pleiotropy analysis, and replication analysis. In such analyses, we typically have J sets of K test statistics where K is a small number (e.g. 2 or 3) and J is large (e.g. 1 million). For each one of the J sets, we want to know if we can reject all K individual nulls. Please see the vignette for a quickstart guide. The paper describing these methods is "Testing a Large Number of Composite Null Hypotheses Using Conditionally Symmetric Multidimensional Gaussian Mixtures in Genome-Wide Studies" by Sun R, McCaw Z, & Lin X (Journal of the American Statistical Association 2025, <doi:10.1080/01621459.2024.2422124>).

r-combat 0.0.4
Propagated dependencies: r-mvtnorm@1.3-3 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=COMBAT
Licenses: GPL 2
Synopsis: Combined Association Test for Genes using Summary Statistics
Description:

Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with complex diseases. Due to the small effect sizes of common variants, the power to detect individual risk variants is generally low. Complementary to SNP-level analysis, a variety of gene-based association tests have been proposed. However, the power of existing gene-based tests is often dependent on the underlying genetic models, and it is not known a priori which test is optimal. Here we proposed COMBined Association Test (COMBAT) to incorporate strengths from multiple existing gene-based tests, including VEGAS, GATES and simpleM. Compared to individual tests, COMBAT shows higher overall performance and robustness across a wide range of genetic models. The algorithm behind this method is described in Wang et al (2017) <doi:10.1534/genetics.117.300257>.

r-dchaos 0.1-7
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-sandwich@3.1-1 r-pracma@2.4.6 r-nnet@7.3-20
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DChaos
Licenses: GPL 2+
Synopsis: Chaotic Time Series Analysis
Description:

Chaos theory has been hailed as a revolution of thoughts and attracting ever increasing attention of many scientists from diverse disciplines. Chaotic systems are nonlinear deterministic dynamic systems which can behave like an erratic and apparently random motion. A relevant field inside chaos theory and nonlinear time series analysis is the detection of a chaotic behaviour from empirical time series data. One of the main features of chaos is the well known initial value sensitivity property. Methods and techniques related to test the hypothesis of chaos try to quantify the initial value sensitive property estimating the Lyapunov exponents. The DChaos package provides different useful tools and efficient algorithms which test robustly the hypothesis of chaos based on the Lyapunov exponent in order to know if the data generating process behind time series behave chaotically or not.

r-hmmrel 0.1.1
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HMMRel
Licenses: GPL 2
Synopsis: Hidden Markov Models for Reliability and Maintenance
Description:

Reliability Analysis and Maintenance Optimization using Hidden Markov Models (HMM). The use of HMMs to model the state of a system which is not directly observable and instead certain indicators (signals) of the true situation are provided via a control system. A hidden model can provide key information about the system dependability, such as the reliability of the system and related measures. An estimation procedure is implemented based on the Baum-Welch algorithm. Classical structures such as K-out-of-N systems and Shock models are illustrated. Finally, the maintenance of the system is considered in the HMM context and two functions for new preventive maintenance strategies are considered. Maintenance efficiency is measured in terms of expected cost. Methods are described in Gamiz, Limnios, and Segovia-Garcia (2023) <doi:10.1016/j.ejor.2022.05.006>.

r-fastjm 1.5.3
Propagated dependencies: r-timeroc@0.4 r-survival@3.8-3 r-statmod@1.5.1 r-rlang@1.1.6 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-nlme@3.1-168 r-mass@7.3-65 r-magrittr@2.0.4 r-future-apply@1.20.0 r-future@1.68.0 r-dplyr@1.1.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=FastJM
Licenses: GPL 3+
Synopsis: Semi-Parametric Joint Modeling of Longitudinal and Survival Data
Description:

This package provides a joint model for large-scale, competing risks time-to-event data with singular or multiple longitudinal biomarkers, implemented with the efficient algorithms developed by Li and colleagues (2022) <doi:10.1155/2022/1362913> and <doi:10.48550/arXiv.2506.12741>. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal biomarkers are modelled using a linear mixed effects model. The association between the longitudinal submodel and the survival submodel is captured through shared random effects. It allows researchers to analyze large-scale data to model biomarker trajectories, estimate their effects on event outcomes, and dynamically predict future events from patientsâ past histories. A function for simulating survival and longitudinal data for multiple biomarkers is also included alongside built-in datasets.

r-hightr 0.3.0
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://github.com/Yongwoo-Eg-Kim/hightR
Licenses: GPL 3
Synopsis: HIGHT Algorithm
Description:

HIGHT(HIGh security and light weigHT) algorithm is a block cipher encryption algorithm developed to provide confidentiality in computing environments that demand low power consumption and lightweight, such as RFID(Radio-Frequency Identification) and USN(Ubiquitous Sensor Network), or in mobile environments that require low power consumption and lightweight, such as smartphones and smart cards. Additionally, it is designed with a simple structure that enables it to be used with basic arithmetic operations, XOR, and circular shifts in 8-bit units. This algorithm was designed to consider both safety and efficiency in a very simple structure suitable for limited environments, compared to the former 128-bit encryption algorithm SEED. In December 2010, it became an ISO(International Organization for Standardization) standard. The detailed procedure is described in Hong et al. (2006) <doi:10.1007/11894063_4>.

r-labelr 0.1.9
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/rhartmano/labelr
Licenses: GPL 3+
Synopsis: Label Data Frames, Variables, and Values
Description:

Create and use data frame labels for data frame objects (frame labels), their columns (name labels), and individual values of a column (value labels). Value labels include one-to-one and many-to-one labels for nominal and ordinal variables, as well as numerical range-based value labels for continuous variables. Convert value-labeled variables so each value is replaced by its corresponding value label. Add values-converted-to-labels columns to a value-labeled data frame while preserving parent columns. Filter and subset a value-labeled data frame using labels, while returning results in terms of values. Overlay labels in place of values in common R commands to increase interpretability. Generate tables of value frequencies, with categories expressed as raw values or as labels. Access data frames that show value-to-label mappings for easy reference.

r-stampp 1.6.3
Propagated dependencies: r-pegas@1.3 r-foreach@1.5.2 r-doparallel@1.0.17 r-adegenet@2.1.11
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/lpembleton/StAMPP
Licenses: GPL 3
Synopsis: Statistical Analysis of Mixed Ploidy Populations
Description:

Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes following Yang et al. (2010) in mixed and single ploidy populations. Bootstrapping across loci is implemented during Fst calculation to generate confidence intervals and p-values around pairwise Fst values. StAMPP utilises SNP genotype data of any ploidy level (with the ability to handle missing data) and is coded to utilise multithreading where available to allow efficient analysis of large datasets. StAMPP is able to handle genotype data from genlight objects allowing integration with other packages such adegenet. Please refer to LW Pembleton, NOI Cogan & JW Forster, 2013, Molecular Ecology Resources, 13(5), 946-952. <doi:10.1111/1755-0998.12129> for the appropriate citation and user manual. Thank you in advance.

r-isocor 0.2.8
Propagated dependencies: r-shinyjs@2.1.0 r-shinyalert@3.1.0 r-shiny@1.11.1 r-plyr@1.8.9 r-markdown@2.0 r-maldiquant@1.22.3 r-golem@0.5.1 r-dt@0.34.0 r-config@0.3.2 r-bslib@0.9.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/janlisec/IsoCor
Licenses: GPL 3+
Synopsis: Analyze Isotope Ratios in a 'Shiny'-App
Description:

Analyzing Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) measurement data to evaluate isotope ratios (IRs) is a complex process. The IsoCor package facilitates this process and renders it reproducible by providing a function to run a Shiny'-App locally in any web browser. In this App the user can upload data files of various formats, select ion traces, apply peak detection and perform calculation of IRs and delta values. Results are provided as figures and tables and can be exported. The App, therefore, facilitates data processing of ICP-MS experiments to quickly obtain optimal processing parameters compared to traditional Excel worksheet based approaches. A more detailed description can be found in the corresponding article <doi:10.1039/D2JA00208F>. The most recent version of IsoCor can be tested online at <https://apps.bam.de/shn00/IsoCor/>.

r-midas2 1.1.0
Propagated dependencies: r-r2jags@0.8-9 r-mcmcpack@1.7-1 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=midas2
Licenses: GPL 3
Synopsis: Bayesian Platform Design with Subgroup Efficacy Exploration(MIDAS-2)
Description:

The rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging, which necessitates innovative, integrated, and efficient trial designs(Yuan, Y., et al. (2016) <doi:10.1002/sim.6971>). MIDAS-2 package enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We used a regression model to characterize the efficacy pattern in subgroups. Information borrowing was applied through Bayesian hierarchical model to improve trial efficiency considering the limited sample size in subgroups(Cunanan, K. M., et al. (2019) <doi:10.1177/1740774518812779>). MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion(Wathen, J. K., & Thall, P. F. (2017) <doi: 10.1177/1740774517692302>).

r-pcadsc 0.8.0
Propagated dependencies: r-reshape2@1.4.5 r-pander@0.6.6 r-matrix@1.7-4 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/annepetersen1/PCADSC
Licenses: GPL 2
Synopsis: Tools for Principal Component Analysis-Based Data Structure Comparisons
Description:

This package provides a suite of non-parametric, visual tools for assessing differences in data structures for two datasets that contain different observations of the same variables. These tools are all based on Principal Component Analysis (PCA) and thus effectively address differences in the structures of the covariance matrices of the two datasets. The PCASDC tools consist of easy-to-use, intuitive plots that each focus on different aspects of the PCA decompositions. The cumulative eigenvalue (CE) plot describes differences in the variance components (eigenvalues) of the deconstructed covariance matrices. The angle plot presents the information loss when moving from the PCA decomposition of one dataset to the PCA decomposition of the other. The chroma plot describes the loading patterns of the two datasets, thereby presenting the relative weighting and importance of the variables from the original dataset.

r-kaphom 0.3
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=kaphom
Licenses: GPL 3
Synopsis: Test the Homogeneity of Kappa Statistics
Description:

Tests the homogeneity of intraclass kappa statistics obtained from independent studies or a stratified study with binary results. It is desired to compare the kappa statistics obtained in multi-center studies or in a single stratified study to give a common or summary kappa using all available information. If the homogeneity test of these kappa statistics is not rejected, then it is possible to make inferences over a single kappa statistic that summarizes all the studies. Muammer Albayrak, Kemal Turhan, Yasemin Yavuz, Zeliha Aydin Kasap (2019) <doi:10.1080/03610918.2018.1538457> Jun-mo Nam (2003) <doi:10.1111/j.0006-341X.2003.00118.x> Jun-mo Nam (2005) <doi:10.1002/sim.2321>Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney,Debajyoti Sinha (1999) <doi:10.2307/3315487> Allan Donner, Michael Eliasziw, Neil Klar (1996) <doi:10.2307/2533154>.

r-panelr 0.7.8
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rlang@1.1.6 r-purrr@1.2.0 r-magrittr@2.0.4 r-lmertest@3.1-3 r-lme4@1.1-37 r-jtools@2.3.0 r-ggplot2@4.0.1 r-formula@1.2-5 r-dplyr@1.1.4 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://panelr.jacob-long.com
Licenses: Expat
Synopsis: Regression Models and Utilities for Repeated Measures and Panel Data
Description:

This package provides an object type and associated tools for storing and wrangling panel data. Implements several methods for creating regression models that take advantage of the unique aspects of panel data. Among other capabilities, automates the "within-between" (also known as "between-within" and "hybrid") panel regression specification that combines the desirable aspects of both fixed effects and random effects econometric models and fits them as multilevel models (Allison, 2009 <doi:10.4135/9781412993869.d33>; Bell & Jones, 2015 <doi:10.1017/psrm.2014.7>). These models can also be estimated via generalized estimating equations (GEE; McNeish, 2019 <doi:10.1080/00273171.2019.1602504>) and Bayesian estimation is (optionally) supported via Stan'. Supports estimation of asymmetric effects models via first differences (Allison, 2019 <doi:10.1177/2378023119826441>) as well as a generalized linear model extension thereof using GEE.

r-qfasar 1.2.1
Propagated dependencies: r-rsolnp@2.0.1
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://cran.r-project.org/package=qfasar
Licenses: FSDG-compatible
Synopsis: Quantitative Fatty Acid Signature Analysis in R
Description:

An implementation of Quantitative Fatty Acid Signature Analysis (QFASA) in R. QFASA is a method of estimating the diet composition of predators. The fundamental unit of information in QFASA is a fatty acid signature (signature), which is a vector of proportions describing the composition of fatty acids within lipids. Signature data from at least one predator and from samples of all potential prey types are required. Calibration coefficients, which adjust for the differential metabolism of individual fatty acids by predators, are also required. Given those data inputs, a predator signature is modeled as a mixture of prey signatures and its diet estimate is obtained as the mixture that minimizes a measure of distance between the observed and modeled signatures. A variety of estimation options and simulation capabilities are implemented. Please refer to the vignette for additional details and references.

r-streak 1.0.0
Propagated dependencies: r-vam@1.1.0 r-speck@1.0.1 r-seurat@5.3.1 r-matrix@1.7-4 r-ckmeans-1d-dp@4.3.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=STREAK
Licenses: GPL 2+
Synopsis: Receptor Abundance Estimation using Feature Selection and Gene Set Scoring
Description:

This package performs receptor abundance estimation for single cell RNA-sequencing data using a supervised feature selection mechanism and a thresholded gene set scoring procedure. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for reduced rank reconstruction and rank-k selection is detailed in: Javaid et al., (2022) <doi:10.1101/2022.10.08.511197>. Gene set scoring procedure is described in: Frost et al., (2020) <doi:10.1093/nar/gkaa582>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.

r-tteice 1.0.1
Propagated dependencies: r-survival@3.8-3 r-shinywidgets@0.9.0 r-shinythemes@1.2.0 r-shiny@1.11.1 r-psych@2.5.6 r-mass@7.3-65 r-dt@0.34.0 r-cmprsk@2.2-12
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/mephas/tteICE
Licenses: GPL 3
Synopsis: Treatment Effect Estimation for Time-to-Event Data with Intercurrent Events
Description:

Analyzing treatment effects in clinical trials with time-to-event outcomes is complicated by intercurrent events. This package implements methods for estimating and inferring the cumulative incidence functions for time-to-event (TTE) outcomes with intercurrent events (ICEs) under the five strategies outlined in the ICH E9 (R1) addendum, see Deng (2025)<doi:10.1002/sim.70091>. This package can be used for analyzing data from both randomized controlled trials and observational studies. In general, we have a primary outcome event and possibly an intercurrent event. Two data structures are allowed: competing risks, where only the time to the first event is recorded, and semicompeting risks, where the times to both the primary outcome event and intercurrent event (or censoring) are recorded. For estimation methods, users can choose nonparametric estimation (which does not use covariates) and semiparametrically efficient estimation.

r-bumhmm 1.34.0
Propagated dependencies: r-summarizedexperiment@1.40.0 r-stringi@1.8.7 r-iranges@2.44.0 r-gtools@3.9.5 r-devtools@2.4.6 r-biostrings@2.78.0
Channel: guix-bioc
Location: guix-bioc/packages/b.scm (guix-bioc packages b)
Home page: https://bioconductor.org/packages/BUMHMM
Licenses: GPL 3
Synopsis: Computational pipeline for computing probability of modification from structure probing experiment data
Description:

This is a probabilistic modelling pipeline for computing per- nucleotide posterior probabilities of modification from the data collected in structure probing experiments. The model supports multiple experimental replicates and empirically corrects coverage- and sequence-dependent biases. The model utilises the measure of a "drop-off rate" for each nucleotide, which is compared between replicates through a log-ratio (LDR). The LDRs between control replicates define a null distribution of variability in drop-off rate observed by chance and LDRs between treatment and control replicates gets compared to this distribution. Resulting empirical p-values (probability of being "drawn" from the null distribution) are used as observations in a Hidden Markov Model with a Beta-Uniform Mixture model used as an emission model. The resulting posterior probabilities indicate the probability of a nucleotide of having being modified in a structure probing experiment.

r-coffee 0.4.3
Propagated dependencies: r-rintcal@1.3.1 r-rice@1.5.0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/Maarten14C/coffee
Licenses: GPL 2+
Synopsis: Chronological Ordering for Fossils and Environmental Events
Description:

While individual calibrated radiocarbon dates can span several centuries, combining multiple dates together with any chronological constraints can make a chronology much more robust and precise. This package uses Bayesian methods to enforce the chronological ordering of radiocarbon and other dates, for example for trees with multiple radiocarbon dates spaced at exactly known intervals (e.g., 10 annual rings). For methods see Christen 2003 <doi:10.11141/ia.13.2>. Another example is sites where the relative chronological position of the dates is taken into account - the ages of dates further down a site must be older than those of dates further up (Buck, Kenworthy, Litton and Smith 1991 <doi:10.1017/S0003598X00080534>; Nicholls and Jones 2001 <doi:10.1111/1467-9876.00250>). The paper accompanying this R package is Blaauw et al. 2024 <doi:10.1017/RDC.2024.56>.

r-gslnls 1.4.2
Dependencies: gsl@2.8 gsl@2.8
Propagated dependencies: r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/JorisChau/gslnls
Licenses: LGPL 3
Synopsis: GSL Multi-Start Nonlinear Least-Squares Fitting
Description:

An R interface to weighted nonlinear least-squares optimization with the GNU Scientific Library (GSL), see M. Galassi et al. (2009, ISBN:0954612078). The available trust region methods include the Levenberg-Marquardt algorithm with and without geodesic acceleration, the Steihaug-Toint conjugate gradient algorithm for large systems and several variants of Powell's dogleg algorithm. Multi-start optimization based on quasi-random samples is implemented using a modified version of the algorithm in Hickernell and Yuan (1997, OR Transactions). Robust nonlinear regression can be performed using various robust loss functions, in which case the optimization problem is solved by iterative reweighted least squares (IRLS). Bindings are provided to tune a number of parameters affecting the low-level aspects of the trust region algorithms. The interface mimics R's nls() function and returns model objects inheriting from the same class.

r-joinxl 1.0.1
Propagated dependencies: r-timeseries@4041.111 r-timedate@4051.111 r-rjava@1.0-11 r-readxl@1.4.5 r-rcpp@1.1.0 r-rchoicedialogs@1.0.6.1 r-r-utils@2.13.0 r-openxlsx@4.2.8.1 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/j.scm (guix-cran packages j)
Home page: http://github.com/yvonneglanville/joinXL
Licenses: GPL 3
Synopsis: Perform Joins or Minus Queries on 'Excel' Files
Description:

This package performs Joins and Minus Queries on Excel Files fulljoinXL() Merges all rows of 2 Excel files based upon a common column in the files. innerjoinXL() Merges all rows from base file and join file when the join condition is met. leftjoinXL() Merges all rows from the base file, and all rows from the join file if the join condition is met. rightjoinXL() Merges all rows from the join file, and all rows from the base file if the join condition is met. minusXL() Performs 2 operations source-minus-target and target-minus-source If the files are identical all output files will be empty. Choose two Excel files via a dialog box, and then follow prompts at the console to choose a base or source file and columns to merge or minus on.

r-pmartr 2.5.1
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.6.0 r-rrcov@1.7-7 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-rcolorbrewer@1.1-3 r-purrr@1.2.0 r-pcamethods@2.2.0 r-patchwork@1.3.2 r-parallelly@1.45.1 r-mvtnorm@1.3-3 r-magrittr@2.0.4 r-glmpca@0.2.0 r-ggplot2@4.0.1 r-foreach@1.5.2 r-e1071@1.7-16 r-dplyr@1.1.4 r-doparallel@1.0.17 r-data-table@1.17.8 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://pmartr.github.io/pmartR/
Licenses: FreeBSD
Synopsis: Panomics Marketplace - Quality Control and Statistical Analysis for Panomics Data
Description:

This package provides functionality for quality control processing and statistical analysis of mass spectrometry (MS) omics data, in particular proteomic (either at the peptide or the protein level), lipidomic, and metabolomic data, as well as RNA-seq based count data and nuclear magnetic resonance (NMR) data. This includes data transformation, specification of groups that are to be compared against each other, filtering of features and/or samples, data normalization, data summarization (correlation, PCA), and statistical comparisons between defined groups. Implements methods described in: Webb-Robertson et al. (2014) <doi:10.1074/mcp.M113.030932>. Webb-Robertson et al. (2011) <doi:10.1002/pmic.201100078>. Matzke et al. (2011) <doi:10.1093/bioinformatics/btr479>. Matzke et al. (2013) <doi:10.1002/pmic.201200269>. Polpitiya et al. (2008) <doi:10.1093/bioinformatics/btn217>. Webb-Robertson et al. (2010) <doi:10.1021/pr1005247>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
Total results: 30423