_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-damsel 1.2.0
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.5.1 r-rsubread@2.20.0 r-rsamtools@2.22.0 r-rlang@1.1.4 r-reshape2@1.4.4 r-plyranges@1.26.0 r-patchwork@1.3.0 r-magrittr@2.0.3 r-goseq@1.58.0 r-ggplot2@3.5.1 r-ggbio@1.54.0 r-genomicranges@1.58.0 r-genomicfeatures@1.58.0 r-genomeinfodb@1.42.0 r-edger@4.4.0 r-dplyr@1.1.4 r-complexheatmap@2.22.0 r-biostrings@2.74.0 r-annotationdbi@1.68.0
Channel: guix-bioc
Location: guix-bioc/packages/d.scm (guix-bioc packages d)
Home page: https://github.com/Oshlack/Damsel
Licenses: Expat
Synopsis: Damsel: an end to end analysis of DamID
Description:

Damsel provides an end to end analysis of DamID data. Damsel takes bam files from Dam-only control and fusion samples and counts the reads matching to each GATC region. edgeR is utilised to identify regions of enrichment in the fusion relative to the control. Enriched regions are combined into peaks, and are associated with nearby genes. Damsel allows for IGV style plots to be built as the results build, inspired by ggcoverage, and using the functionality and layering ability of ggplot2. Damsel also conducts gene ontology testing with bias correction through goseq, and future versions of Damsel will also incorporate motif enrichment analysis. Overall, Damsel is the first package allowing for an end to end analysis with visual capabilities. The goal of Damsel was to bring all the analysis into one place, and allow for exploratory analysis within R.

r-hdshop 0.1.5
Propagated dependencies: r-rdpack@2.6.1 r-lattice@0.22-6
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://github.com/Otryakhin-Dmitry/global-minimum-variance-portfolio
Licenses: GPL 3
Synopsis: High-Dimensional Shrinkage Optimal Portfolios
Description:

Constructs shrinkage estimators of high-dimensional mean-variance portfolios and performs high-dimensional tests on optimality of a given portfolio. The techniques developed in Bodnar et al. (2018 <doi:10.1016/j.ejor.2017.09.028>, 2019 <doi:10.1109/TSP.2019.2929964>, 2020 <doi:10.1109/TSP.2020.3037369>, 2021 <doi:10.1080/07350015.2021.2004897>) are central to the package. They provide simple and feasible estimators and tests for optimal portfolio weights, which are applicable for large p and large n situations where p is the portfolio dimension (number of stocks) and n is the sample size. The package also includes tools for constructing portfolios based on shrinkage estimators of the mean vector and covariance matrix as well as a new Bayesian estimator for the Markowitz efficient frontier recently developed by Bauder et al. (2021) <doi:10.1080/14697688.2020.1748214>.

r-loggit 2.1.1
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/ryapric/loggit
Licenses: Expat
Synopsis: Modern Logging for the R Ecosystem
Description:

An effortless ndjson (newline-delimited JSON') logger, with two primary log-writing interfaces. It provides a set of wrappings for base R's message(), warning(), and stop() functions that maintain identical functionality, but also log the handler message to an ndjson log file. loggit also exports its internal loggit() function for powerful and configurable custom logging. No change in existing code is necessary to use this package, and should only require additions to fully leverage the power of the logging system. loggit also provides a log reader for reading an ndjson log file into a data frame, log rotation, and live echo of the ndjson log messages to terminal stdout for log capture by external systems (like containers). loggit is ideal for Shiny apps, data pipelines, modeling work flows, and more. Please see the vignettes for detailed example use cases.

r-orloca 5.6
Propagated dependencies: r-ucminf@1.2.2 r-rmarkdown@2.29 r-png@0.1-8 r-knitr@1.49
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: http://knuth.uca.es/orloca/
Licenses: GPL 3+
Synopsis: Operations Research LOCational Analysis Models
Description:

Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem. The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See "The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995. <DOI:10.1007/BF01592245>. General global optimization algorithms are used to solve the problem, along with the adhoc Weiszfeld method, see "Sur le point pour lequel la Somme des distances de n points donnes est minimum", by Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937 or "On the point for which the sum of the distances to n given points is minimum", by E. Weiszfeld and F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.

r-pompom 0.2.1
Propagated dependencies: r-reshape2@1.4.4 r-qgraph@1.9.8 r-lavaan@0.6-19 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=pompom
Licenses: GPL 2
Synopsis: Person-Oriented Method and Perturbation on the Model
Description:

An implementation of a hybrid method of person-oriented method and perturbation on the model. Pompom is the initials of the two methods. The hybrid method will provide a multivariate intraindividual variability metric (iRAM). The person-oriented method used in this package refers to uSEM (unified structural equation modeling, see Kim et al., 2007, Gates et al., 2010 and Gates et al., 2012 for details). Perturbation on the model was conducted according to impulse response analysis introduced in Lutkepohl (2007). Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007) <doi:10.1002/hbm.20259>. Gates, K. M., Molenaar, P. C. M., Hillary, F. G., Ram, N., & Rovine, M. J. (2010) <doi:10.1016/j.neuroimage.2009.12.117>. Gates, K. M., & Molenaar, P. C. M. (2012) <doi:10.1016/j.neuroimage.2012.06.026>. Lutkepohl, H. (2007, ISBN:3540262393).

r-wanova 0.4.0
Propagated dependencies: r-suppdists@1.1-9.8 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=WAnova
Licenses: GPL 3+
Synopsis: Welch's Anova from Summary Statistics
Description:

This package provides the functions to perform a Welch's one-way Anova with fixed effects based on summary statistics (sample size, means, standard deviation) and the Games-Howell post hoc test for multiple comparisons and provides the effect size estimator adjusted omega squared. In addition sample size estimation can be computed based on Levy's method, and a Monte Carlo simulation is included to bootstrap residual normality and homoscedasticity Welch, B. L. (1951) <doi:10.1093/biomet/38.3-4.330> Kirk, R. E. (1996) <doi:10.1177/0013164496056005002> Carroll, R. M., & Nordholm, L. A. (1975) <doi:10.1177/001316447503500304> Albers, C., & Lakens, D. (2018) <doi:10.1016/j.jesp.2017.09.004> Games, P. A., & Howell, J. F. (1976) <doi:10.2307/1164979> Levy, K. J. (1978a) <doi:10.1080/00949657808810246> Show-Li, J., & Gwowen, S. (2014) <doi:10.1111/bmsp.12006>.

r-boinet 1.1.0
Propagated dependencies: r-mfp@1.5.4.1 r-iso@0.0-21 r-copula@1.1-6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=boinet
Licenses: Expat
Synopsis: Conduct Simulation Study of Bayesian Optimal Interval Design with BOIN-ET Family
Description:

Bayesian optimal interval based on both efficacy and toxicity outcomes (BOIN-ET) design is a model-assisted oncology phase I/II trial design, aiming to establish an optimal biological dose accounting for efficacy and toxicity in the framework of dose-finding. Some extensions of BOIN-ET design are also available to allow for time-to-event efficacy and toxicity outcomes based on cumulative and pending data (time-to-event BOIN-ET: TITE-BOIN-ET), ordinal graded efficacy and toxicity outcomes (generalized BOIN-ET: gBOIN-ET), and their combination (TITE-gBOIN-ET). boinet is a package to implement the BOIN-ET design family and supports the conduct of simulation studies to assess operating characteristics of BOIN-ET, TITE-BOIN-ET, gBOIN-ET, and TITE-gBOIN-ET, where users can choose design parameters in flexible and straightforward ways depending on their own application.

r-barrks 1.1.1
Propagated dependencies: r-terra@1.7-83 r-stringr@1.5.1 r-readr@2.1.5 r-rdpack@2.6.1 r-purrr@1.0.2 r-lubridate@1.9.3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://jjentschke.github.io/barrks/
Licenses: GPL 3+
Synopsis: Calculate Bark Beetle Phenology Using Different Models
Description:

Calculate the bark beetle phenology based on raster data or point-related data. There are multiple models implemented for two bark beetle species. The models can be customized and their submodels (onset of infestation, beetle development, diapause initiation, mortality) can be combined. The following models are available in the package: PHENIPS-Clim (first-time release in this package), PHENIPS (Baier et al. 2007) <doi:10.1016/j.foreco.2007.05.020>, RITY (Ogris et al. 2019) <doi:10.1016/j.ecolmodel.2019.108775>, CHAPY (Ogris et al. 2020) <doi:10.1016/j.ecolmodel.2020.109137>, BSO (Jakoby et al. 2019) <doi:10.1111/gcb.14766>, Lange et al. (2008) <doi:10.1007/978-3-540-85081-6_32>, Jönsson et al. (2011) <doi:10.1007/s10584-011-0038-4>. The package may be expanded by models for other bark beetle species in the future.

r-catfun 0.1.4
Propagated dependencies: r-rlang@1.1.4 r-magrittr@2.0.3 r-hmisc@5.2-0 r-epitools@0.5-10.1 r-desctools@0.99.58 r-cli@3.6.3 r-broom@1.0.7
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=catfun
Licenses: Expat
Synopsis: Categorical Data Analysis
Description:

Includes wrapper functions around existing functions for the analysis of categorical data and introduces functions for calculating risk differences and matched odds ratios. R currently supports a wide variety of tools for the analysis of categorical data. However, many functions are spread across a variety of packages with differing syntax and poor compatibility with each another. prop_test() combines the functions binom.test(), prop.test() and BinomCI() into one output. prop_power() allows for power and sample size calculations for both balanced and unbalanced designs. riskdiff() is used for calculating risk differences and matched_or() is used for calculating matched odds ratios. For further information on methods used that are not documented in other packages see Nathan Mantel and William Haenszel (1959) <doi:10.1093/jnci/22.4.719> and Alan Agresti (2002) <ISBN:0-471-36093-7>.

r-idmact 1.0.1
Propagated dependencies: r-rlang@1.1.4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/mncube/idmact
Licenses: Expat
Synopsis: Interpreting Differences Between Mean ACT Scores
Description:

Interpreting the differences between mean scale scores across various forms of an assessment can be challenging. This difficulty arises from different mappings between raw scores and scale scores, complex mathematical relationships, adjustments based on judgmental procedures, and diverse equating functions applied to different assessment forms. An alternative method involves running simulations to explore the effect of incrementing raw scores on mean scale scores. The idmact package provides an implementation of this approach based on the algorithm detailed in Schiel (1998) <https://www.act.org/content/dam/act/unsecured/documents/ACT_RR98-01.pdf> which was developed to help interpret differences between mean scale scores on the American College Testing (ACT) assessment. The function idmact_subj() within the package offers a framework for running simulations on subject-level scores. In contrast, the idmact_comp() function provides a framework for conducting simulations on composite scores.

r-sara4r 0.1.0
Propagated dependencies: r-terra@1.7-83 r-tcltk2@1.2-11
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://hydro-geomatic-lab.com/
Licenses: GPL 3+
Synopsis: An R-GUI for Spatial Analysis of Surface Runoff using the NRCS-CN Method
Description:

This package provides a Graphical user interface to calculate the rainfall-runoff relation using the Natural Resources Conservation Service - Curve Number method (NRCS-CN method) but include modifications by Hawkins et al., (2002) about the Initial Abstraction. This GUI follows the programming logic of a previously published software (Hernandez-Guzman et al., 2011)<doi:10.1016/j.envsoft.2011.07.006>. It is a raster-based GIS tool that outputs runoff estimates from Land use/land cover and hydrologic soil group maps. This package has already been published in Journal of Hydroinformatics (Hernandez-Guzman et al., 2021)<doi:10.2166/hydro.2020.087> but it is under constant development at the Institute about Natural Resources Research (INIRENA) from the Universidad Michoacana de San Nicolas de Hidalgo and represents a collaborative effort between the Hydro-Geomatic Lab (INIRENA) with the Environmental Management Lab (CIAD, A.C.).

r-gofcat 0.1.2
Propagated dependencies: r-vgam@1.1-12 r-stringr@1.5.1 r-reshape@0.8.9 r-matrix@1.7-1 r-epir@2.0.81 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gofcat
Licenses: GPL 2
Synopsis: Goodness-of-Fit Measures for Categorical Response Models
Description:

This package provides a post-estimation method for categorical response models (CRM). Inputs from objects of class serp(), clm(), polr(), multinom(), mlogit(), vglm() and glm() are currently supported. Available tests include the Hosmer-Lemeshow tests for the binary, multinomial and ordinal logistic regression; the Lipsitz and the Pulkstenis-Robinson tests for the ordinal models. The proportional odds, adjacent-category, and constrained continuation-ratio models are particularly supported at ordinal level. Tests for the proportional odds assumptions in ordinal models are also possible with the Brant and the Likelihood-Ratio tests. Moreover, several summary measures of predictive strength (Pseudo R-squared), and some useful error metrics, including, the brier score, misclassification rate and logloss are also available for the binary, multinomial and ordinal models. Ugba, E. R. and Gertheiss, J. (2018) <http://www.statmod.org/workshops_archive_proceedings_2018.html>.

r-seqhmm 1.2.6
Propagated dependencies: r-traminer@2.2-11 r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-numderiv@2016.8-1.1 r-nloptr@2.1.1 r-matrix@1.7-1 r-igraph@2.1.1 r-gridbase@0.4-7
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=seqHMM
Licenses: GPL 2+
Synopsis: Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series
Description:

Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models. Models are estimated using maximum likelihood via the EM algorithm and/or direct numerical maximization with analytical gradients. All main algorithms are written in C++ with support for parallel computation. Documentation is available via several vignettes in this page, and the paper by Helske and Helske (2019, <doi:10.18637/jss.v088.i03>).

r-udpipe 0.8.11
Propagated dependencies: r-rcpp@1.0.13-1 r-matrix@1.7-1 r-data-table@1.16.2
Channel: guix-cran
Location: guix-cran/packages/u.scm (guix-cran packages u)
Home page: https://bnosac.github.io/udpipe/en/index.html
Licenses: FSDG-compatible
Synopsis: Tokenization, Parts of Speech Tagging, Lemmatization and Dependency Parsing with the 'UDPipe' 'NLP' Toolkit
Description:

This natural language processing toolkit provides language-agnostic tokenization', parts of speech tagging', lemmatization and dependency parsing of raw text. Next to text parsing, the package also allows you to train annotation models based on data of treebanks in CoNLL-U format as provided at <https://universaldependencies.org/format.html>. The techniques are explained in detail in the paper: Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe', available at <doi:10.18653/v1/K17-3009>. The toolkit also contains functionalities for commonly used data manipulations on texts which are enriched with the output of the parser. Namely functionalities and algorithms for collocations, token co-occurrence, document term matrix handling, term frequency inverse document frequency calculations, information retrieval metrics (Okapi BM25), handling of multi-word expressions, keyword detection (Rapid Automatic Keyword Extraction, noun phrase extraction, syntactical patterns) sentiment scoring and semantic similarity analysis.

r-udpipe 0.8.11
Propagated dependencies: r-data-table@1.16.2 r-matrix@1.7-1 r-rcpp@1.0.13-1
Channel: guix-science
Location: guix-science/packages/cran.scm (guix-science packages cran)
Home page: https://bnosac.github.io/udpipe/en/index.html
Licenses: MPL 2.0
Synopsis: R bindings for UDPipe NLP toolkit
Description:

This natural language processing toolkit provides language-agnostic tokenization, parts of speech tagging, lemmatization and dependency parsing of raw text. Next to text parsing, the package also allows you to train annotation models based on data of treebanks in CoNLL-U format as provided at https://universaldependencies.org/format.html. The techniques are explained in detail in the paper: 'Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe', available at doi:10.18653/v1/K17-3009. The toolkit also contains functionalities for commonly used data manipulations on texts which are enriched with the output of the parser. Namely functionalities and algorithms for collocations, token co-occurrence, document term matrix handling, term frequency inverse document frequency calculations, information retrieval metrics (Okapi BM25), handling of multi-word expressions, keyword detection (Rapid Automatic Keyword Extraction, noun phrase extraction, syntactical patterns) sentiment scoring and semantic similarity analysis.

r-motbfs 1.4.1
Propagated dependencies: r-quadprog@1.5-8 r-matrix@1.7-1 r-lpsolve@5.6.22 r-ggm@2.5.1 r-bnlearn@5.0.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MoTBFs
Licenses: LGPL 3
Synopsis: Learning Hybrid Bayesian Networks using Mixtures of Truncated Basis Functions
Description:

Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Pérez-Bernabé, A. Salmerón, H. Langseth (2015) <doi:10.1007/978-3-319-20807-7_36>; H. Langseth, T.D. Nielsen, I. Pérez-Bernabé, A. Salmerón (2014) <doi:10.1016/j.ijar.2013.09.012>; I. Pérez-Bernabé, A. Fernández, R. Rumà , A. Salmerón (2016) <doi:10.1007/s10618-015-0429-7>). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called motbf and jointmotbf'.

r-ttgsea 1.14.0
Propagated dependencies: r-tokenizers@0.3.0 r-tm@0.7-14 r-textstem@0.1.4 r-text2vec@0.6.4 r-stopwords@2.3 r-purrr@1.0.2 r-keras@2.15.0 r-diagrammer@1.0.11 r-data-table@1.16.2
Channel: guix-bioc
Location: guix-bioc/packages/t.scm (guix-bioc packages t)
Home page: https://bioconductor.org/packages/ttgsea
Licenses: Artistic License 2.0
Synopsis: Tokenizing Text of Gene Set Enrichment Analysis
Description:

Functional enrichment analysis methods such as gene set enrichment analysis (GSEA) have been widely used for analyzing gene expression data. GSEA is a powerful method to infer results of gene expression data at a level of gene sets by calculating enrichment scores for predefined sets of genes. GSEA depends on the availability and accuracy of gene sets. There are overlaps between terms of gene sets or categories because multiple terms may exist for a single biological process, and it can thus lead to redundancy within enriched terms. In other words, the sets of related terms are overlapping. Using deep learning, this pakage is aimed to predict enrichment scores for unique tokens or words from text in names of gene sets to resolve this overlapping set issue. Furthermore, we can coin a new term by combining tokens and find its enrichment score by predicting such a combined tokens.

r-genpwr 1.0.4
Propagated dependencies: r-nleqslv@3.3.5 r-mass@7.3-61 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=genpwr
Licenses: GPL 3
Synopsis: Power Calculations Under Genetic Model Misspecification
Description:

Power and sample size calculations for genetic association studies allowing for misspecification of the model of genetic susceptibility. "Hum Hered. 2019;84(6):256-271.<doi:10.1159/000508558>. Epub 2020 Jul 28." Power and/or sample size can be calculated for logistic (case/control study design) and linear (continuous phenotype) regression models, using additive, dominant, recessive or degree of freedom coding of the genetic covariate while assuming a true dominant, recessive or additive genetic effect. In addition, power and sample size calculations can be performed for gene by environment interactions. These methods are extensions of Gauderman (2002) <doi:10.1093/aje/155.5.478> and Gauderman (2002) <doi:10.1002/sim.973> and are described in: Moore CM, Jacobson S, Fingerlin TE. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. American Society of Human Genetics. October 2018, San Diego.

r-saemix 3.3
Propagated dependencies: r-scales@1.3.0 r-rlang@1.1.4 r-npde@3.5 r-mclust@6.1.1 r-mass@7.3-61 r-gridextra@2.3 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=saemix
Licenses: GPL 2+
Synopsis: Stochastic Approximation Expectation Maximization (SAEM) Algorithm
Description:

The saemix package implements the Stochastic Approximation EM algorithm for parameter estimation in (non)linear mixed effects models. The SAEM algorithm (i) computes the maximum likelihood estimator of the population parameters, without any approximation of the model (linearisation, quadrature approximation,...), using the Stochastic Approximation Expectation Maximization (SAEM) algorithm, (ii) provides standard errors for the maximum likelihood estimator (iii) estimates the conditional modes, the conditional means and the conditional standard deviations of the individual parameters, using the Hastings-Metropolis algorithm (see Comets et al. (2017) <doi:10.18637/jss.v080.i03>). Many applications of SAEM in agronomy, animal breeding and PKPD analysis have been published by members of the Monolix group. The full PDF documentation for the package including references about the algorithm and examples can be downloaded on the github of the IAME research institute for saemix': <https://github.com/iame-researchCenter/saemix/blob/7638e1b09ccb01cdff173068e01c266e906f76eb/docsaem.pdf>.

r-banova 1.2.1
Propagated dependencies: r-runjags@2.2.2-5 r-rstan@2.32.6 r-rjags@4-16 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BANOVA
Licenses: GPL 2+
Synopsis: Hierarchical Bayesian ANOVA Models
Description:

It covers several Bayesian Analysis of Variance (BANOVA) models used in analysis of experimental designs in which both within- and between- subjects factors are manipulated. They can be applied to data that are common in the behavioral and social sciences. The package includes: Hierarchical Bayes ANOVA models with normal response, t response, Binomial (Bernoulli) response, Poisson response, ordered multinomial response and multinomial response variables. All models accommodate unobserved heterogeneity by including a normal distribution of the parameters across individuals. Outputs of the package include tables of sums of squares, effect sizes and p-values, and tables of predictions, which are easily interpretable for behavioral and social researchers. The floodlight analysis and mediation analysis based on these models are also provided. BANOVA uses Stan and JAGS as the computational platform. References: Dong and Wedel (2017) <doi:10.18637/jss.v081.i09>; Wedel and Dong (2020) <doi:10.1002/jcpy.1111>.

r-gauser 1.2
Propagated dependencies: r-desolve@1.40
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gauseR
Licenses: GPL 3
Synopsis: Lotka-Volterra Models for Gause's 'Struggle for Existence'
Description:

This package provides a collection of tools and data for analyzing the Gause microcosm experiments, and for fitting Lotka-Volterra models to time series data. Includes methods for fitting single-species logistic growth, and multi-species interaction models, e.g. of competition, predator/prey relationships, or mutualism. See documentation for individual functions for examples. In general, see the lv_optim() function for examples of how to fit parameter values in multi-species systems. Note that the general methods applied here, as well as the form of the differential equations that we use, are described in detail in the Quantitative Ecology textbook by Lehman et al., available at <http://hdl.handle.net/11299/204551>, and in Lina K. Mühlbauer, Maximilienne Schulze, W. Stanley Harpole, and Adam T. Clark. gauseR': Simple methods for fitting Lotka-Volterra models describing Gause's Struggle for Existence in the journal Ecology and Evolution.

r-trialr 0.1.6
Propagated dependencies: r-tidybayes@3.0.7 r-tibble@3.2.1 r-stringr@1.5.1 r-stanheaders@2.32.10 r-rstantools@2.4.0 r-rstan@2.32.6 r-rlang@1.1.4 r-rcppparallel@5.1.9 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-purrr@1.0.2 r-mass@7.3-61 r-magrittr@2.0.3 r-gtools@3.9.5 r-ggplot2@3.5.1 r-dplyr@1.1.4 r-coda@0.19-4.1 r-binom@1.1-1.1 r-bh@1.84.0-0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/brockk/trialr
Licenses: GPL 3+
Synopsis: Clinical Trial Designs in 'rstan'
Description:

This package provides a collection of clinical trial designs and methods, implemented in rstan and R, including: the Continual Reassessment Method by O'Quigley et al. (1990) <doi:10.2307/2531628>; EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the two-parameter logistic method of Neuenschwander, Branson & Sponer (2008) <doi:10.1002/sim.3230>; and the Augmented Binary method by Wason & Seaman (2013) <doi:10.1002/sim.5867>; and more. We provide functions to aid model-fitting and analysis. The rstan implementations may also serve as a cookbook to anyone looking to extend or embellish these models. We hope that this package encourages the use of Bayesian methods in clinical trials. There is a preponderance of early phase trial designs because this is where Bayesian methods are used most. If there is a method you would like implemented, please get in touch.

r-ecotox 1.4.4
Propagated dependencies: r-tibble@3.2.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=ecotox
Licenses: GPL 3 FSDG-compatible
Synopsis: Analysis of Ecotoxicology
Description:

This package provides a simple approach to using a probit or logit analysis to calculate lethal concentration (LC) or time (LT) and the appropriate fiducial confidence limits desired for selected LC or LT for ecotoxicology studies (Finney 1971; Wheeler et al. 2006; Robertson et al. 2007). The simplicity of ecotox comes from the syntax it implies within its functions which are similar to functions like glm() and lm(). In addition to the simplicity of the syntax, a comprehensive data frame is produced which gives the user a predicted LC or LT value for the desired level and a suite of important parameters such as fiducial confidence limits and slope. Finney, D.J. (1971, ISBN: 052108041X); Wheeler, M.W., Park, R.M., and Bailer, A.J. (2006) <doi:10.1897/05-320R.1>; Robertson, J.L., Savin, N.E., Russell, R.M., and Preisler, H.K. (2007, ISBN: 0849323312).

r-htgm2d 1.0
Propagated dependencies: r-minimalistgodb@1.0 r-jaccard@0.1.0 r-htgm@1.1 r-gplots@3.2.0 r-gominer@1.0
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HTGM2D
Licenses: GPL 2+
Synopsis: Two Dimensional High Throughput 'GoMiner'
Description:

The Gene Ontology (GO) Consortium <https://geneontology.org/> organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as GoMiner (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Microarray studies are usually analyzed with BP, whereas proteomics researchers often prefer CC. To capture the benefit of both of those ontologies, I developed a two-dimensional version of High-Throughput GoMiner ('HTGM2D'). I generate a 2D heat map whose axes are any two of BP, MF, or CC, and the value within a picture element of the heat map reflects the Jaccard metric p-value for the number of genes in common for the corresponding pair.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249