This package solves convex cone programs via operator splitting. It can solve: linear programs, second-order cone programs, semidefinite programs, exponential cone programs, and power cone programs, or problems with any combination of those cones. SCS uses AMD (a set of routines for permuting sparse matrices prior to factorization) and LDL (a sparse LDL factorization and solve package) from SuiteSparse.
This package implements a self-organizing map which has application in gene clustering. It provides functions like:
filtering data by certain floor, ceiling, max/min ratio, and max - min difference;
normalization of the data;
get the average distortion measure;
train a self-organizing map;
summarize a som object;
yeast cell cycle.
Constructs and visualises trade-off functions for f-differential privacy (f-DP) as introduced by Dong et al. (2022) <doi:10.1111/rssb.12454>. Supports Gaussian differential privacy, the f-DP generalisation of (epsilon, delta)-differential privacy, and accepts user-specified optimal type I / type II errors from which the lower convex hull trade-off function is automatically constructed.
This package provides functions to specify and fit generalized nonlinear models, including models with multiplicative interaction terms such as the UNIDIFF model from sociology and the AMMI model from crop science, and many others. Over-parameterized representations of models are used throughout; functions are provided for inference on estimable parameter combinations, as well as standard methods for diagnostics etc.
Hierarchical community detection on networks by a recursive spectral partitioning strategy, which is shown to be effective and efficient in Li, Lei, Bhattacharyya, Sarkar, Bickel, and Levina (2018) <arXiv:1810.01509>. The package also includes a data generating function for a binary tree stochastic block model, a special case of stochastic block model that admits hierarchy between communities.
This package provides functions to estimate the probability to receive the observed treatment, based on individual characteristics. The inverse of these probabilities can be used as weights when estimating causal effects from observational data via marginal structural models. Both point treatment situations and longitudinal studies can be analysed. The same functions can be used to correct for informative censoring.
Designed for association studies in nested association mapping (NAM) panels, experimental and random panels. The method is described by Xavier et al. (2015) <doi:10.1093/bioinformatics/btv448>. It includes tools for genome-wide associations of multiple populations, marker quality control, population genetics analysis, genome-wide prediction, solving mixed models and finding variance components through likelihood and Bayesian methods.
This package implements partition-assisted clustering and multiple alignments of networks. It 1) utilizes partition-assisted clustering to find robust and accurate clusters and 2) discovers coherent relationships of clusters across multiple samples. It is particularly useful for analyzing single-cell data set. Please see Li et al. (2017) <doi:10.1371/journal.pcbi.1005875> for detail method description.
Analyze public-use micro data from the Survey of Consumer Finances. Provides tools to download prepared data files, construct replicate-weighted multiply imputed survey designs, compute descriptive statistics and model estimates, and produce plots and tables. Methods follow design-based inference for complex surveys and pooling across multiple imputations. See the package website and the code book for background.
Cluster data without specifying the number of clusters using the Table Invitation Prior (TIP) introduced in the paper "Clustering Gene Expression Using the Table Invitation Prior" by Charles W. Harrison, Qing He, and Hsin-Hsiung Huang (2022) <doi:10.3390/genes13112036>. TIP is a Bayesian prior that uses pairwise distance and similarity information to cluster vectors, matrices, or tensors.
Run a Gibbs sampler for hurdle models to analyze data showing an excess of zeros, which is common in zero-inflated count and semi-continuous models. The package includes the hurdle model under Gaussian, Gamma, inverse Gaussian, Weibull, Exponential, Beta, Poisson, negative binomial, logarithmic, Bell, generalized Poisson, and binomial distributional assumptions. The models described in Ganjali et al. (2024).
Retrieval the leaf area index (LAI) and soil moisture (SM) from microwave backscattering data using water cloud model (WCM) model . The WCM algorithm attributed to Pervot et al.(1993) <doi:10.1016/0034-4257(93)90053-Z>. The authors are grateful to SAC, ISRO, Ahmedabad for providing financial support to Dr. Prashant K Srivastava to conduct this research work.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
Extend Rasch and Item Response Theory (IRT) analyses by providing tools for post-processing the output from five major IRT packages (i.e., eRm', psychotools', ltm', mirt', and TAM'). The current version provides the plotPIccc() function, which extracts from the return object of the originating package all information required to draw an extended Person-Item-Map (PIccc), showing any combination of * category characteristic curves (CCCs), * threshold characteristic curves (TCCs), * item characteristic curves (ICCs), * category information functions (CIFs), * item information functions (IIFs), * test information function (TIF), and the * standard error curve (S.E.). for uni- and multidimensional models (as far as supported by each package). It allows for selecting dimensions, items, and categories to plot and offers numerous options to adapt the output. The return object contains all calculated values for further processing.
An interface to the Bayesian Weighted Sums model implemented in RStan'. It estimates the summed effect of multiple, often moderately to highly correlated, continuous predictors. Its applications can be found in analysis of exposure mixtures. The model was proposed by Hamra, Maclehose, Croen, Kauffman, and Newschaffer (2021) <doi:10.3390/ijerph18041373>. This implementation includes an extension to model binary outcome.
Solves ordinary and delay differential equations, where the objective function is written in either R or C. Suitable only for non-stiff equations, the solver uses a Dormand-Prince method that allows interpolation of the solution at any point. This approach is as described by Hairer, Norsett and Wanner (1993) <ISBN:3540604529>. Support is also included for iterating difference equations.
Presents a "Scenarios" class containing general parameters, risk parameters and projection results. Risk parameters are gathered together into a ParamsScenarios sub-object. The general process for using this package is to set all needed parameters in a Scenarios object, use the customPathsGeneration method to proceed to the projection, then use xxx_PriceDistribution() methods to get asset prices.
This package provides a collection of functions to fit and explore single, multi-component and restricted Frequency Modulated Moebius (FMM) models. FMM is a nonlinear parametric regression model capable of fitting non-sinusoidal shapes in rhythmic patterns. Details about the mathematical formulation of FMM models can be found in Rueda et al. (2019) <doi:10.1038/s41598-019-54569-1>.
An implementation of the fractional weighted bootstrap to be used as a drop-in for functions in the boot package. The fractional weighted bootstrap (also known as the Bayesian bootstrap) involves drawing weights randomly that are applied to the data rather than resampling units from the data. See Xu et al. (2020) <doi:10.1080/00031305.2020.1731599> for details.
Estimates a counterfactual using Gaussian process projection. It takes a dataframe, creates missingness in the desired outcome variable and estimates counterfactual values based on all information in the dataframe. The package writes Stan code, checks it for convergence and adds artificial noise to prevent overfitting and returns a plot of actual values and estimated counterfactual values using r-base plot.
Estimation, model selection and other aspects of statistical inference in Graphical Gaussian models with edge and vertex symmetries (Graphical Gaussian models with colours). Documentation about gRc is provided in the paper by Hojsgaard and Lauritzen (2007, <doi:10.18637/jss.v023.i06>) and the paper by Hojsgaard and Lauritzen (2008, <doi:10.1111/j.1467-9868.2008.00666.x>).
This package provides a word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.
Local partial likelihood estimation by Fan, Lin and Zhou(2006)<doi:10.1214/009053605000000796> and simultaneous confidence band is a set of tools to test the covariates-biomarker interaction for survival data. Test for the covariates-biomarker interaction using the bootstrap method and the asymptotic method with simultaneous confidence band (Liu, Jiang and Chen (2015)<doi:10.1002/sim.6563>).
This package provides methods for high-dimensional multi-view learning based on the multi-view stacking (MVS) framework. For technical details on the MVS and stacked penalized logistic regression (StaPLR) methods see Van Loon, Fokkema, Szabo, & De Rooij (2020) <doi:10.1016/j.inffus.2020.03.007> and Van Loon et al. (2022) <doi:10.3389/fnins.2022.830630>.