Cluster data without specifying the number of clusters using the Table Invitation Prior (TIP) introduced in the paper "Clustering Gene Expression Using the Table Invitation Prior" by Charles W. Harrison, Qing He, and Hsin-Hsiung Huang (2022) <doi:10.3390/genes13112036>. TIP is a Bayesian prior that uses pairwise distance and similarity information to cluster vectors, matrices, or tensors.
Run a Gibbs sampler for hurdle models to analyze data showing an excess of zeros, which is common in zero-inflated count and semi-continuous models. The package includes the hurdle model under Gaussian, Gamma, inverse Gaussian, Weibull, Exponential, Beta, Poisson, negative binomial, logarithmic, Bell, generalized Poisson, and binomial distributional assumptions. The models described in Ganjali et al. (2024).
Retrieval the leaf area index (LAI) and soil moisture (SM) from microwave backscattering data using water cloud model (WCM) model . The WCM algorithm attributed to Pervot et al.(1993) <doi:10.1016/0034-4257(93)90053-Z>. The authors are grateful to SAC, ISRO, Ahmedabad for providing financial support to Dr. Prashant K Srivastava to conduct this research work.
R/qtl is an extension library for the R statistics system. It is used to analyze experimental crosses for identifying genes contributing to variation in quantitative traits (so-called quantitative trait loci, QTLs).
Using a hidden Markov model, R/qtl estimates genetic maps, to identify genotyping errors, and to perform single-QTL and two-QTL, two-dimensional genome scans.
Ren'Py is a visual novel engine that helps you use words, images, and sounds to tell interactive stories that run on computers and mobile devices. These can be both visual novels and life simulation games. The easy to learn script language allows anyone to efficiently write large visual novels, while its Python scripting is enough for complex simulation games.
This is a package for regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. The rms package is a collection of functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models, ordinal models for continuous Y with a variety of distribution families, and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. The package works with almost any regression model, but it was especially written to work with binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression.
Assists in the whole process of designing and evaluating Randomized Control Trials. Robust treatment assignment by strata/blocks, that handles misfits; Power calculations of the minimum detectable treatment effect or minimum populations; Balance tables of T-test of covariates; Balance Regression: (treatment ~ all x variables) with F-test of null model; Impact_evaluation: Impact evaluation regressions. This function gives you the option to include control_vars, fixed effect variables, cluster variables (for robust SE), multiple endogenous variables and multiple heterogeneous variables (to test treatment effect heterogeneity) summary_statistics: Function that creates a summary statistics table with statistics rank observations in n groups: Creates a factor variable with n groups. Each group has a min and max label attach to each category. Athey, Susan, and Guido W. Imbens (2017) <arXiv:1607.00698>
.
Redox is a C++ interface to the Redis key-value store that makes it easy to write applications that are both elegant and high-performance. Communication should be a means to an end, not something we spend a lot of time worrying about. Redox takes care of the details so you can move on to the interesting part of your project.
An interface to the Bayesian Weighted Sums model implemented in RStan'. It estimates the summed effect of multiple, often moderately to highly correlated, continuous predictors. Its applications can be found in analysis of exposure mixtures. The model was proposed by Hamra, Maclehose, Croen, Kauffman, and Newschaffer (2021) <doi:10.3390/ijerph18041373>. This implementation includes an extension to model binary outcome.
Solves ordinary and delay differential equations, where the objective function is written in either R or C. Suitable only for non-stiff equations, the solver uses a Dormand-Prince method that allows interpolation of the solution at any point. This approach is as described by Hairer, Norsett and Wanner (1993) <ISBN:3540604529>. Support is also included for iterating difference equations.
The DER (or PaF
) income polarization index as proposed by Duclos J. Y., Esteban, J. and Ray D. (2004). "Polarization: concepts, measurement, estimation". Econometrica, 72(6): 1737--1772. <doi:10.1111/j.1468-0262.2004.00552.x>. The index may be computed for a single or for a range of values of the alpha-parameter. Bootstrapping is also available.
Presents a "Scenarios" class containing general parameters, risk parameters and projection results. Risk parameters are gathered together into a ParamsScenarios
sub-object. The general process for using this package is to set all needed parameters in a Scenarios object, use the customPathsGeneration
method to proceed to the projection, then use xxx_PriceDistribution()
methods to get asset prices.
An implementation of the fractional weighted bootstrap to be used as a drop-in for functions in the boot package. The fractional weighted bootstrap (also known as the Bayesian bootstrap) involves drawing weights randomly that are applied to the data rather than resampling units from the data. See Xu et al. (2020) <doi:10.1080/00031305.2020.1731599> for details.
This package provides a collection of functions to fit and explore single, multi-component and restricted Frequency Modulated Moebius (FMM) models. FMM is a nonlinear parametric regression model capable of fitting non-sinusoidal shapes in rhythmic patterns. Details about the mathematical formulation of FMM models can be found in Rueda et al. (2019) <doi:10.1038/s41598-019-54569-1>.
Estimation, model selection and other aspects of statistical inference in Graphical Gaussian models with edge and vertex symmetries (Graphical Gaussian models with colours). Documentation about gRc
is provided in the paper by Hojsgaard and Lauritzen (2007, <doi:10.18637/jss.v023.i06>) and the paper by Hojsgaard and Lauritzen (2008, <doi:10.1111/j.1467-9868.2008.00666.x>).
Estimates a counterfactual using Gaussian process projection. It takes a dataframe, creates missingness in the desired outcome variable and estimates counterfactual values based on all information in the dataframe. The package writes Stan code, checks it for convergence and adds artificial noise to prevent overfitting and returns a plot of actual values and estimated counterfactual values using r-base plot.
Estimates the longitudinal concordance correlation to access the longitudinal agreement profile. The estimation approach implemented is variance components approach based on polynomial mixed effects regression model, as proposed by Oliveira, Hinde and Zocchi (2018) <doi:10.1007/s13253-018-0321-1>. In addition, non-parametric confidence intervals were implemented using percentile method or normal-approximation based on Fisher Z-transformation.
This package provides a word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>. LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove). It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.
Local partial likelihood estimation by Fan, Lin and Zhou(2006)<doi:10.1214/009053605000000796> and simultaneous confidence band is a set of tools to test the covariates-biomarker interaction for survival data. Test for the covariates-biomarker interaction using the bootstrap method and the asymptotic method with simultaneous confidence band (Liu, Jiang and Chen (2015)<doi:10.1002/sim.6563>).
This package provides methods for high-dimensional multi-view learning based on the multi-view stacking (MVS) framework. For technical details on the MVS and stacked penalized logistic regression (StaPLR
) methods see Van Loon, Fokkema, Szabo, & De Rooij (2020) <doi:10.1016/j.inffus.2020.03.007> and Van Loon et al. (2022) <doi:10.3389/fnins.2022.830630>.
Design and analysis of flexible platform trials with non-concurrent controls. Functions for data generation, analysis, visualization and running simulation studies are provided. The implemented analysis methods are described in: Bofill Roig et al. (2022) <doi:10.1186/s12874-022-01683-w>, Saville et al. (2022) <doi:10.1177/17407745221112013> and Schmidli et al. (2014) <doi:10.1111/biom.12242>.
This package provides a series of tools for analyzing Systems Factorial Technology data. This includes functions for plotting and statistically testing capacity coefficient functions and survivor interaction contrast functions. Houpt, Blaha, McIntire
, Havig, and Townsend (2013) <doi:10.3758/s13428-013-0377-3> provide a basic introduction to Systems Factorial Technology along with examples using the sft R package.
An implementation of equilibrium-based yield per recruit methods. Yield per recruit methods can used to estimate the optimal yield for a fish population as described by Walters and Martell (2004) <isbn:0-691-11544-3>. The yield can be based on the number of fish caught (or harvested) or biomass caught for all fish or just large (trophy) individuals.
This package implements a self-organizing map which has application in gene clustering. It provides functions like:
filtering data by certain floor, ceiling, max/min ratio, and max - min difference;
normalization of the data;
get the average distortion measure;
train a self-organizing map;
summarize a som object;
yeast cell cycle.