Gene lists derived from the results of genomic analyses are rich in biological information. For instance, differentially expressed genes (DEGs) from a microarray or RNA-Seq analysis are related functionally in terms of their response to a treatment or condition. Gene lists can vary in size, up to several thousand genes, depending on the robustness of the perturbations or how widely different the conditions are biologically. Having a way to associate biological relatedness between hundreds and thousands of genes systematically is impractical by manually curating the annotation and function of each gene. Over-representation analysis (ORA) of genes was developed to identify biological themes. Given a Gene Ontology (GO) and an annotation of genes that indicate the categories each one fits into, significance of the over-representation of the genes within the ontological categories is determined by a Fisher's exact test or modeling according to a hypergeometric distribution. Comparing a small number of enriched biological categories for a few samples is manageable using Venn diagrams or other means for assessing overlaps. However, with hundreds of enriched categories and many samples, the comparisons are laborious. Furthermore, if there are enriched categories that are shared between samples, trying to represent a common theme across them is highly subjective. goSTAG
uses GO subtrees to tag and annotate genes within a set. goSTAG
visualizes the similarities between the over-representation of DEGs by clustering the p-values from the enrichment statistical tests and labels clusters with the GO term that has the most paths to the root within the subtree generated from all the GO terms in the cluster.
Statistical classification and regression have been popular among various fields and stayed in the limelight of scientists of those fields. Examples of the fields include clinical trials where the statistical classification of patients is indispensable to predict the clinical courses of diseases. Considering the negative impact of diseases on performing daily tasks, correctly classifying patients based on the clinical information is vital in that we need to identify patients of the high-risk group to develop a severe state and arrange medical treatment for them at an opportune moment. Deep learning - a part of artificial intelligence - has gained much attention, and research on it burgeons during past decades: see, e.g, Kazemi and Mirroshandel (2018) <DOI:10.1016/j.artmed.2017.12.001>. It is a veritable technique which was originally designed for the classification, and hence, the Buddle package can provide sublime solutions to various challenging classification and regression problems encountered in the clinical trials. The Buddle package is based on the back-propagation algorithm - together with various powerful techniques such as batch normalization and dropout - which performs a multi-layer feed-forward neural network: see Krizhevsky et. al (2017) <DOI:10.1145/3065386>, Schmidhuber (2015) <DOI:10.1016/j.neunet.2014.09.003> and LeCun
et al. (1998) <DOI:10.1109/5.726791> for more details. This package contains two main functions: TrainBuddle()
and FetchBuddle()
. TrainBuddle()
builds a feed-forward neural network model and trains the model. FetchBuddle()
recalls the trained model which is the output of TrainBuddle()
, classifies or regresses given data, and make a final prediction for the data.
Generates internet memes that optionally include a superimposed inset plot and other atypical features, combining the visual impact of an attention-grabbing meme with graphic results of data analysis. The package differs from related packages that focus on imitating and reproducing standard memes. Some packages do this by interfacing with online meme generators whereas others achieve this natively. This package takes the latter approach. It does not interface with online meme generators or require any authentication with external websites. It reads images directly from local files or via URL and meme generation is done by the package. While this is similar to the meme package available on CRAN, it differs in that the focus is on allowing for non-standard meme layouts and hybrids of memes mixed with graphs. While this package can be used to make basic memes like an online meme generator would produce, it caters primarily to hybrid graph-meme plots where the meme presentation can be seen as a backdrop highlighting foreground graphs of data analysis results. The package also provides support for an arbitrary number of meme text labels with arbitrary size, position and other attributes rather than restricting to the standard top and/or bottom text placement. This is useful for proper aesthetic interleaving of plots of data between meme image backgrounds and overlain text labels. The package offers a selection of templates for graph placement and appearance with respect to the underlying meme. Graph templates also permit additional template-specific customization. Animated gif support is provided but this is optional and functional only if the magick package is installed. magick is not required unless gif functionality is desired.
The package provides functionality for kernel-based analysis of DNA, RNA, and amino acid sequences via SVM-based methods. As core functionality, kebabs implements following sequence kernels: spectrum kernel, mismatch kernel, gappy pair kernel, and motif kernel. Apart from an efficient implementation of standard position-independent functionality, the kernels are extended in a novel way to take the position of patterns into account for the similarity measure. Because of the flexibility of the kernel formulation, other kernels like the weighted degree kernel or the shifted weighted degree kernel with constant weighting of positions are included as special cases. An annotation-specific variant of the kernels uses annotation information placed along the sequence together with the patterns in the sequence. The package allows for the generation of a kernel matrix or an explicit feature representation in dense or sparse format for all available kernels which can be used with methods implemented in other R packages. With focus on SVM-based methods, kebabs provides a framework which simplifies the usage of existing SVM implementations in kernlab, e1071, and LiblineaR
. Binary and multi-class classification as well as regression tasks can be used in a unified way without having to deal with the different functions, parameters, and formats of the selected SVM. As support for choosing hyperparameters, the package provides cross validation - including grouped cross validation, grid search and model selection functions. For easier biological interpretation of the results, the package computes feature weights for all SVMs and prediction profiles which show the contribution of individual sequence positions to the prediction result and indicate the relevance of sequence sections for the learning result and the underlying biological functions.
Can be used for paternity and maternity assignment and outperforms conventional methods where closely related individuals occur in the pool of possible parents. The method compares the genotypes of offspring with any combination of potentials parents and scores the number of mismatches of these individuals at bi-allelic genetic markers (e.g. Single Nucleotide Polymorphisms). It elaborates on a prior exclusion method based on the Homozygous Opposite Test (HOT; Huisman 2017 <doi:10.1111/1755-0998.12665>) by introducing the additional exclusion criterion HIPHOP (Homozygous Identical Parents, Heterozygous Offspring are Precluded; Cockburn et al., in revision). Potential parents are excluded if they have more mismatches than can be expected due to genotyping error and mutation, and thereby one can identify the true genetic parents and detect situations where one (or both) of the true parents is not sampled. Package hiphop can deal with (a) the case where there is contextual information about parentage of the mother (i.e. a female has been seen to be involved in reproductive tasks such as nest building), but paternity is unknown (e.g. due to promiscuity), (b) where both parents need to be assigned, because there is no contextual information on which female laid eggs and which male fertilized them (e.g. polygynandrous mating system where multiple females and males deposit young in a common nest, or organisms with external fertilisation that breed in aggregations). For details: Cockburn, A., Penalba, J.V.,Jaccoud, D.,Kilian, A., Brouwer, L., Double, M.C., Margraf, N., Osmond, H.L., van de Pol, M. and Kruuk, L.E.B. (in revision). HIPHOP: improved paternity assignment among close relatives using a simple exclusion method for bi-allelic markers. Molecular Ecology Resources, DOI to be added upon acceptance.
This package performs functional regression, and some related approaches, for intensive longitudinal data (see the book by Walls & Schafer, 2006, Models for Intensive Longitudinal Data, Oxford) when such data is not necessarily observed on an equally spaced grid of times. The approach generally follows the ideas of Goldsmith, Bobb, Crainiceanu, Caffo, and Reich (2011)<DOI:10.1198/jcgs.2010.10007> and the approach taken in their sample code, but with some modifications to make it more feasible to use with long rather than wide, non-rectangular longitudinal datasets with unequal and potentially random measurement times. It also allows easy plotting of the correlation between the smoothed covariate and the outcome as a function of time, which can add additional insights on how to interpret a functional regression. Additionally, it also provides several permutation tests for the significance of the functional predictor. The heuristic interpretation of ``time is used to describe the index of the functional predictor, but the same methods can equally be used for another unidimensional continuous index, such as space along a north-south axis. Note that most of the functionality of this package has been superseded by added features after 2016 in the pfr function by Jonathan Gellar, Mathew W. McLean
, Jeff Goldsmith, and Fabian Scheipl, in the refund package built by Jeff Goldsmith and co-authors and maintained by Julia Wrobel. The development of the funreg package in 2015 and 2016 was part of a research project supported by Award R03 CA171809-01 from the National Cancer Institute and Award P50 DA010075 from the National Institute on Drug Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Drug Abuse, the National Cancer Institute, or the National Institutes of Health.
Computing Average and TPX Power under various BHFDR type sequential procedures. All of these procedures involve control of some summary of the distribution of the FDP, e.g. the proportion of discoveries which are false in a given experiment. The most widely known of these, the BH-FDR procedure, controls the FDR which is the mean of the FDP. A lesser known procedure, due to Lehmann and Romano, controls the FDX, or probability that the FDP exceeds a user provided threshold. This is less conservative than FWE control procedures but much more conservative than the BH-FDR proceudre. This package and the references supporting it introduce a new procedure for controlling the FDX which we call the BH-FDX procedure. This procedure iteratively identifies, given alpha and lower threshold delta, an alpha* less than alpha at which BH-FDR guarantees FDX control. This uses asymptotic approximation and is only slightly more conservative than the BH-FDR procedure. Likewise, we can think of the power in multiple testing experiments in terms of a summary of the distribution of the True Positive Proportion (TPP), the portion of tests truly non-null distributed that are called significant. The package will compute power, sample size or any other missing parameter required for power defined as (i) the mean of the TPP (average power) or (ii) the probability that the TPP exceeds a given value, lambda, (TPX power) via asymptotic approximation. All supplied theoretical results are also obtainable via simulation. The suggested approach is to narrow in on a design via the theoretical approaches and then make final adjustments/verify the results by simulation. The theoretical results are described in Izmirlian, G (2020) Statistics and Probability letters, "<doi:10.1016/j.spl.2020.108713>", and an applied paper describing the methodology with a simulation study is in preparation. See citation("pwrFDR
").
For QTL mapping, this package comprises several functions designed to execute diverse tasks, such as simulating or analyzing data, calculating significance thresholds, and visualizing QTL mapping results. The single-QTL or multiple-QTL method, which enables the fitting and comparison of various statistical models, is employed to analyze the data for estimating QTL parameters. The models encompass linear regression, permutation tests, normal mixture models, and truncated normal mixture models. The Gaussian stochastic process is utilized to compute significance thresholds for QTL detection on a genetic linkage map within experimental populations. Two types of data, complete genotyping, and selective genotyping data from various experimental populations, including backcross, F2, recombinant inbred (RI) populations, and advanced intercrossed (AI) populations, are considered in the QTL mapping analysis. For QTL hotspot detection, statistical methods can be developed based on either utilizing individual-level data or summarized data. We have proposed a statistical framework capable of handling both individual-level data and summarized QTL data for QTL hotspot detection. Our statistical framework can overcome the underestimation of thresholds resulting from ignoring the correlation structure among traits. Additionally, it can identify different types of hotspots with minimal computational cost during the detection process. Here, we endeavor to furnish the R codes for our QTL mapping and hotspot detection methods, intended for general use in genes, genomics, and genetics studies. The QTL mapping methods for the complete and selective genotyping designs are based on the multiple interval mapping (MIM) model proposed by Kao, C.-H. , Z.-B. Zeng and R. D. Teasdale (1999) <doi: 10.1534/genetics.103.021642> and H.-I Lee, H.-A. Ho and C.-H. Kao (2014) <doi: 10.1534/genetics.114.168385>, respectively. The QTL hotspot detection analysis is based on the method by Wu, P.-Y., M.-.H. Yang, and C.-H. Kao (2021) <doi: 10.1093/g3journal/jkab056>.
Estimation of interaction (i.e., moderation) effects between latent variables in structural equation models (SEM). The supported methods are: The constrained approach (Algina & Moulder, 2001). The unconstrained approach (Marsh et al., 2004). The residual centering approach (Little et al., 2006). The double centering approach (Lin et al., 2010). The latent moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000). The quasi-maximum likelihood (QML) approach (Klein & Muthén, 2007) (temporarily unavailable) The constrained- unconstrained, residual- and double centering- approaches are estimated via lavaan (Rosseel, 2012), whilst the LMS- and QML- approaches are estimated via modsem it self. Alternatively model can be estimated via Mplus (Muthén & Muthén, 1998-2017). References: Algina, J., & Moulder, B. C. (2001). <doi:10.1207/S15328007SEM0801_3>. "A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3." Klein, A., & Moosbrugger, H. (2000). <doi:10.1007/BF02296338>. "Maximum likelihood estimation of latent interaction effects with the LMS method." Klein, A. G., & Muthén, B. O. (2007). <doi:10.1080/00273170701710205>. "Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects." Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). <doi:10.1080/10705511.2010.488999>. "Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies." Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). <doi:10.1207/s15328007sem1304_1>. "On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables." Marsh, H. W., Wen, Z., & Hau, K. T. (2004). <doi:10.1037/1082-989X.9.3.275>. "Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction." Muthén, L.K. and Muthén, B.O. (1998-2017). "'Mplus Userâ s Guide. Eighth Edition." <https://www.statmodel.com/>. Rosseel Y (2012). <doi:10.18637/jss.v048.i02>. "'lavaan': An R Package for Structural Equation Modeling.".
Forced-choice (FC) response has gained increasing popularity and interest for its resistance to faking when well-designed (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>). To established well-designed FC scales, typically each item within a block should measure different trait and have similar level of social desirability (Zhang et al., 2020 <doi:10.1177/1094428119836486>). Recent study also suggests the importance of high inter-item agreement of social desirability between items within a block (Pavlov et al., 2021 <doi:10.31234/osf.io/hmnrc>). In addition to this, FC developers may also need to maximize factor loading differences (Brown & Maydeu-Olivares, 2011 <doi:10.1177/0013164410375112>) or minimize item location differences (Cao & Drasgow, 2019 <doi:10.1037/apl0000414>) depending on scoring models. Decision of which items should be assigned to the same block, termed item pairing, is thus critical to the quality of an FC test. This pairing process is essentially an optimization process which is currently carried out manually. However, given that we often need to simultaneously meet multiple objectives, manual pairing becomes impractical or even not feasible once the number of latent traits and/or number of items per trait are relatively large. To address these problems, autoFC
is developed as a practical tool for facilitating the automatic construction of FC tests (Li et al., 2022 <doi:10.1177/01466216211051726>), essentially exempting users from the burden of manual item pairing and reducing the computational costs and biases induced by simple ranking methods. Given characteristics of each item (and item responses), FC measures can be constructed either automatically based on user-defined pairing criteria and weights, or based on exact specifications of each block (i.e., blueprint; see Li et al., 2024 <doi:10.1177/10944281241229784>). Users can also generate simulated responses based on the Thurstonian Item Response Theory model (Brown & Maydeu-Olivares, 2011 <doi:10.1177/0013164410375112>) and predict trait scores of simulated/actual respondents based on an estimated model.
In shotgun proteomics, shared peptides (i.e., peptides that might originate from different proteins sharing homology, from different proteoforms due to alternative mRNA
splicing, post-translational modifications, proteolytic cleavages, and/or allelic variants) represent a major source of ambiguity in protein identifications. The net4pg package allows to assess and handle ambiguity of protein identifications. It implements methods for two main applications. First, it allows to represent and quantify ambiguity of protein identifications by means of graph connected components (CCs). In graph theory, CCs are defined as the largest subgraphs in which any two vertices are connected to each other by a path and not connected to any other of the vertices in the supergraph. Here, proteins sharing one or more peptides are thus gathered in the same CC (multi-protein CC), while unambiguous protein identifications constitute CCs with a single protein vertex (single-protein CCs). Therefore, the proportion of single-protein CCs and the size of multi-protein CCs can be used to measure the level of ambiguity of protein identifications. The package implements a strategy to efficiently calculate graph connected components on large datasets and allows to visually inspect them. Secondly, the net4pg package allows to exploit the increasing availability of matched transcriptomic and proteomic datasets to reduce ambiguity of protein identifications. More precisely, it implement a transcriptome-based filtering strategy fundamentally consisting in the removal of those proteins whose corresponding transcript is not expressed in the sample-matched transcriptome. The underlying assumption is that, according to the central dogma of biology, there can be no proteins without the corresponding transcript. Most importantly, the package allows to visually inspect the effect of the filtering on protein identifications and quantify ambiguity before and after filtering by means of graph connected components. As such, it constitutes a reproducible and transparent method to exploit transcriptome information to enhance protein identifications. All methods implemented in the net4pg package are fully described in Fancello and Burger (2022) <doi:10.1186/s13059-022-02701-2>.
Inflammation can affect many micronutrient biomarkers and can thus lead to incorrect diagnosis of individuals and to over- or under-estimate the prevalence of deficiency in a population. Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) is a multi-agency and multi-country partnership designed to improve the interpretation of nutrient biomarkers in settings of inflammation and to generate context-specific estimates of risk factors for anemia (Suchdev (2016) <doi:10.3945/an.115.010215>). In the past few years, BRINDA published a series of papers to provide guidance on how to adjust micronutrient biomarkers, retinol binding protein, serum retinol, serum ferritin by Namaste (2020), soluble transferrin receptor (sTfR
), serum zinc, serum and Red Blood Cell (RBC) folate, and serum B-12, using inflammation markers, alpha-1-acid glycoprotein (AGP) and/or C-Reactive Protein (CRP) by Namaste (2020) <doi:10.1093/ajcn/nqaa141>, Rohner (2017) <doi:10.3945/ajcn.116.142232>, McDonald
(2020) <doi:10.1093/ajcn/nqz304>, and Young (2020) <doi:10.1093/ajcn/nqz303>. The BRINDA inflammation adjustment method mainly focuses on Women of Reproductive Age (WRA) and Preschool-age Children (PSC); however, the general principle of the BRINDA method might apply to other population groups. The BRINDA R package is a user-friendly all-in-one R package that uses a series of functions to implement BRINDA adjustment method, as described above. The BRINDA R package will first carry out rigorous checks and provides users guidance to correct data or input errors (if they occur) prior to inflammation adjustments. After no errors are detected, the package implements the BRINDA inflammation adjustment for up to five micronutrient biomarkers, namely retinol-binding-protein, serum retinol, serum ferritin, sTfR
, and serum zinc (when appropriate), using inflammation indicators of AGP and/or CRP for various population groups. Of note, adjustment for serum and RBC folate and serum B-12 is not included in the R package, since evidence shows that no adjustment is needed for these micronutrient biomarkers in either WRA or PSC groups (Young (2020) <doi:10.1093/ajcn/nqz303>).
Sometimes data for analysis are obtained using more convenient or less expensive means yielding "surrogate" variables for what could be obtained more accurately, albeit with less convenience; or less conveniently or at more expense yielding "reference" variables, thought of as being measured without error. Analysis of the surrogate variables measured with error generally yields biased estimates when the objective is to make inference about the reference variables. Often it is thought that ignoring the measurement error in surrogate variables only biases effects toward the null hypothesis, but this need not be the case. Measurement errors may bias parameter estimates either toward or away from the null hypothesis. If one has a data set with surrogate variable data from the full sample, and also reference variable data from a randomly selected subsample, then one can assess the bias introduced by measurement error in parameter estimation, and use this information to derive improved estimates based upon all available data. Formulaically these estimates based upon the reference variables from the validation subsample combined with the surrogate variables from the whole sample can be interpreted as starting with the estimate from reference variables in the validation subsample, and "augmenting" this with additional information from the surrogate variables. This suggests the term "augmented" estimate. The meerva package calculates these augmented estimates in the regression setting when there is a randomly selected subsample with both surrogate and reference variables. Measurement errors may be differential or non-differential, in any or all predictors (simultaneously) as well as outcome. The augmented estimates derive, in part, from the multivariate correlation between regression model parameter estimates from the reference variables and the surrogate variables, both from the validation subset. Because the validation subsample is chosen at random any biases imposed by measurement error, whether non-differential or differential, are reflected in this correlation and these correlations can be used to derive estimates for the reference variables using data from the whole sample. The main functions in the package are meerva.fit which calculates estimates for a dataset, and meerva.sim.block which simulates multiple datasets as described by the user, and analyzes these datasets, storing the regression coefficient estimates for inspection. The augmented estimates, as well as how measurement error may arise in practice, is described in more detail by Kremers WK (2021) <arXiv:2106.14063>
and is an extension of the works by Chen Y-H, Chen H. (2000) <doi:10.1111/1467-9868.00243>, Chen Y-H. (2002) <doi:10.1111/1467-9868.00324>, Wang X, Wang Q (2015) <doi:10.1016/j.jmva.2015.05.017> and Tong J, Huang J, Chubak J, et al. (2020) <doi:10.1093/jamia/ocz180>.
Read Acoustic HAC format.
Embedded scripting for Rust.
Endian-aware primitives for Rust
Zero-copy deserialization framework for Rust
Persistent data structures with structural sharing
Rust library for accessing USB devices.
Zero-copy deserialization framework for Rust
ROFF (man page format) generation library.
This package provides a generic connection pool.
This package provides a library for accessing USB devices.
This package provides Safe, fast, small crypto using Rust.