Randomized and balanced allocation of units to treatment groups using the Finite Selection Model (FSM). The FSM was originally proposed and developed at the RAND corporation by Carl Morris to enhance the experimental design for the now famous Health Insurance Experiment. See Morris (1979) <doi:10.1016/0304-4076(79)90053-8> for details on the original version of the FSM.
Procedures for joint detection of changes in both expectation and variance in univariate sequences. Performs a statistical test of the null hypothesis of the absence of change points. In case of rejection performs an algorithm for change point detection. Reference - Bivariate change point detection - joint detection of changes in expectation and variance, Scandinavian Journal of Statistics, DOI 10.1111/sjos.12547.
An interactive presentation on the topic of normal distribution using rmarkdown and shiny packages. It is helpful to those who want to learn normal distribution quickly and get a hands on experience. The presentation has a template for solving problems on normal distribution. Runtime examples are provided in the package function as well as at <https://kartikeyastat.shinyapps.io/NormalDistribution/>
.
Quantifies hypothesis to data fit for repeated measures and longitudinal data, as described by Thorngate (1987) <doi:10.1016/S0166-4115(08)60083-7> and Grice et al., (2015) <doi:10.1177/2158244015604192>. Hypothesis and data are encoded as pairwise relative orderings which are then compared to determine the percentage of orderings in the data that are matched by the hypothesis.
You can use this program for 3 sets of categorical data for propensity score matching. Assume that the data has 3 different categorical variables. You can use it to perform propensity matching of baseline indicator groupings. The matching will make the differences in the baseline data smaller. This method was described by Alvaro Fuentes (2022) <doi:10.1080/00273171.2021.1925521>.
Computationally efficient tools for high dimensional predictive modeling (regression and classification). SAM is short for sparse additive modeling, and adopts the computationally efficient basis spline technique. We solve the optimization problems by various computational algorithms including the block coordinate descent algorithm, fast iterative soft-thresholding algorithm, and newton method. The computation is further accelerated by warm-start and active-set tricks.
This package provides functions for generating Standardized Climate Indices (SCI). Functions for generating Standardized Climate Indices (SCI). SCI is a transformation of (smoothed) climate (or environmental) time series that removes seasonality and forces the data to take values of the standard normal distribution. SCI was originally developed for precipitation. In this case it is known as the Standardized Precipitation Index (SPI).
Implementation of the methodologies described in 1) Alexander Petersen, Xi Liu and Afshin A. Divani (2021) <doi:10.1214/20-aos1971>, including global F tests, partial F tests, intrinsic Wasserstein-infinity bands and Wasserstein density bands, and 2) Chao Zhang, Piotr Kokoszka and Alexander Petersen (2022) <doi:10.1111/jtsa.12590>, including estimation, prediction, and inference of the Wasserstein autoregressive models.
The les package estimates Loci of Enhanced Significance (LES) in tiling microarray data. These are regions of regulation such as found in differential transcription, CHiP-chip
, or DNA modification analysis. The package provides a universal framework suitable for identifying differential effects in tiling microarray data sets, and is independent of the underlying statistics at the level of single probes.
Extend Rasch and Item Response Theory (IRT) analyses by providing tools for post-processing the output from five major IRT packages (i.e., eRm
', psychotools', ltm', mirt', and TAM'). The current version provides the plotPIccc()
function, which extracts from the return object of the originating package all information required to draw an extended Person-Item-Map (PIccc), showing any combination of * category characteristic curves (CCCs), * threshold characteristic curves (TCCs), * item characteristic curves (ICCs), * category information functions (CIFs), * item information functions (IIFs), * test information function (TIF), and the * standard error curve (S.E.). for uni- and multidimensional models (as far as supported by each package). It allows for selecting dimensions, items, and categories to plot and offers numerous options to adapt the output. The return object contains all calculated values for further processing.
Uses the CMS application programming interface <https://dnav.cms.gov/api/healthdata> to provide users databases containing yearly Medicare reimbursement rates in the United States. Data can be acquired for the entire United States or only for specific localities. Currently, support is only provided for the Medicare Physician Fee Schedule, but support will be expanded for other CMS databases in future versions.
This package provides a general test for conditional independence in supervised learning algorithms as proposed by Watson & Wright (2021) <doi:10.1007/s10994-021-06030-6>. Implements a conditional variable importance measure which can be applied to any supervised learning algorithm and loss function. Provides statistical inference procedures without parametric assumptions and applies equally well to continuous and categorical predictors and outcomes.
Discrete event simulation (DES) involves modeling of systems having discrete, i.e. abrupt, state changes. For instance, when a job arrives to a queue, the queue length abruptly increases by 1. This package is an R implementation of the event-oriented approach to DES; see the tutorial in Matloff (2008) <http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf>
.
Various algorithms related to linguistic fuzzy logic: mining for linguistic fuzzy association rules, composition of fuzzy relations, performing perception-based logical deduction (PbLD
), and forecasting time-series using fuzzy rule-based ensemble (FRBE). The package also contains basic fuzzy-related algebraic functions capable of handling missing values in different styles (Bochvar, Sobocinski, Kleene etc.), computation of Sugeno integrals and fuzzy transform.
Multivariate tests, estimates and methods based on the identity score, spatial sign score and spatial rank score are provided. The methods include one and c-sample problems, shape estimation and testing, linear regression and principal components. The methodology is described in Oja (2010) <doi:10.1007/978-1-4419-0468-3> and Nordhausen and Oja (2011) <doi:10.18637/jss.v043.i05>.
Correct identification and handling of missing data is one of the most important steps in any analysis. To aid this process, mde provides a very easy to use yet robust framework to quickly get an idea of where the missing data lies and therefore find the most appropriate action to take. Graham WJ (2009) <doi:10.1146/annurev.psych.58.110405.085530>.
This package provides utilities for estimation for the multivariate inverse Gaussian distribution of Minami (2003) <doi:10.1081/STA-120025379>, including random vector generation and explicit estimators of the location vector and scale matrix. The package implements kernel density estimators discussed in Belzile, Desgagnes, Genest and Ouimet (2024) <doi:10.48550/arXiv.2209.04757>
for smoothing multivariate data on half-spaces.
Consider a data matrix of n individuals with p variates. The objective general index (OGI) is a general index that combines the p variates into a univariate index in order to rank the n individuals. The OGI is always positively correlated with each of the variates. More details can be found in Sei (2016) <doi:10.1016/j.jmva.2016.02.005>.
This package provides an infrastructure for efficient processing of large-scale genetic and phenotypic data including core functions for: 1) fitting linear mixed models, 2) constructing marker-based genomic relationship matrices, 3) estimating genetic parameters (heritability and correlation), 4) performing genomic prediction and genetic risk profiling, and 5) single or multi-marker association analyses. Rohde et al. (2019) <doi:10.1101/503631>.
This package provides tools for reading, parsing and visualizing simulation data stored in xvg'/'xpm file formats (commonly generated by GROMACS molecular dynamics software). Streamlines post-processing and analysis of molecular dynamics ('MD') simulation outputs, enabling efficient exploration of molecular stability and conformational changes. Supports import of trajectory metrics ('RMSD', energy, temperature) and creation of publication-ready visualizations through integration with ggplot2'.
This package provides visualization techniques, data sets, summary and inference procedures aimed particularly at categorical data. Special emphasis is given to highly extensible grid graphics. The package was originally inspired by the book "Visualizing Categorical Data" by Michael Friendly and is now the main support package for a new book, "Discrete Data Analysis with R" by Michael Friendly and David Meyer (2015).
It provides the density, distribution function, quantile function, random number generator, likelihood function, moments and Maximum Likelihood estimators for a given sample, all this for the three parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999). This is a special case of the skewed family of distributions available in Galarza et.al. (2017) <doi:10.1002/sta4.140> useful for quantile regression.
This package provides a tidy framework for automatic knowledge classification and visualization. Currently, the core functionality of the framework is mainly supported by modularity-based clustering (community detection) in keyword co-occurrence network, and focuses on co-word analysis of bibliometric research. However, the designed functions in akc are general, and could be extended to solve other tasks in text mining as well.
This package provides functions for computing the density and the log-likelihood function of closed-skew normal variates, and for generating random vectors sampled from this distribution. See Gonzalez-Farias, G., Dominguez-Molina, J., and Gupta, A. (2004). The closed skew normal distribution, Skew-elliptical distributions and their applications: a journey beyond normality, Chapman and Hall/CRC, Boca Raton, FL, pp. 25-42.