Multi-environment genomic prediction for training and test environments using penalized factorial regression. Predictions are made using genotype-specific environmental sensitivities as in Millet et al. (2019) <doi:10.1038/s41588-019-0414-y>.
This package provides an R interface to the GeoNetwork API (<https://geonetwork-opensource.org/#api>) allowing to upload and publish metadata in a GeoNetwork web-application and expose it to OGC CSW.
Computes the ACMIF test and Bonferroni-adjusted p-value of interaction in two-factor studies. Produces corresponding interaction plot and analysis of variance tables and p-values from several other tests of non-additivity.
This package performs linear discriminant analysis in high dimensional problems based on reliable covariance estimators for problems with (many) more variables than observations. Includes routines for classifier training, prediction, cross-validation and variable selection.
Assists in generating categorical clustered outcome data, estimating the Intracluster Correlation Coefficient (ICC) for nominal or ordinal data with 2+ categories under the resampling and method of moments (MoM) methods, with confidence intervals.
This package implements a Shiny Item Analysis module and functions for computing false positive rate and other binary classification metrics from inter-rater reliability based on Bartoš & Martinková (2024) <doi:10.1111/bmsp.12343>.
Common coordinate-based workflows involving processed chromatin loop and genomic element data are considered and packaged into appropriate customizable functions. Includes methods for linking element sets via chromatin loops and creating consensus loop datasets.
Library of functions for the statistical analysis and simulation of Locally Stationary Wavelet Packet (LSWP) processes. The methods implemented by this library are described in Cardinali and Nason (2017) <doi:10.1111/jtsa.12230>.
Lipid annotation in untargeted LC-MS lipidomics based on fragmentation rules. Alcoriza-Balaguer MI, Garcia-Canaveras JC, Lopez A, Conde I, Juan O, Carretero J, Lahoz A (2019) <doi:10.1021/acs.analchem.8b03409>.
Time-dependent Receiver Operating Characteristic curves, Area Under the Curve, and Net Reclassification Indexes for repeated measures. It is based on methods in Barbati and Farcomeni (2017) <doi:10.1007/s10260-017-0410-2>.
Application of a test to rule out that trends detected in hydrological time series are explained exclusively by the randomness of the climate. Based on: Ricchetti, (2018) <https://repositorio.uchile.cl/handle/2250/168487>.
Wrapper for minepy implementation of Maximal Information-based Nonparametric Exploration statistics (MIC and MINE family). Detailed information of the ANSI C implementation of minepy can be found at <http://minepy.readthedocs.io/en/latest>.
This package provides a set of functions providing the implementation of the network meta-analysis model with dose-response relationships, predicted values of the fitted model and dose-response plots in a frequentist way.
Identifies single nucleotide variants in next-generation sequencing data by estimating their local false discovery rates. For more details, see Karimnezhad, A. and Perkins, T. J. (2024) <doi:10.1038/s41598-024-51958-z>.
Basic statistical analyses. The package has been developed to be used in statistics courses at Bocconi University (Milan, Italy). Currently, the package includes some exploratory and inferential analyses usually presented in introductory statistics courses.
Retime speech signals with a native Waveform Similarity Overlap-Add (WSOLA) implementation translated from the TSM toolbox by Driedger & Müller (2014) <https://www.audiolabs-erlangen.de/content/resources/MIR/TSMtoolbox/2014_DriedgerMueller_TSM-Toolbox_DAFX.pdf>. Design retimings and pitch (f0) transformations with tidy data and apply them via Praat interface. Produce spectrograms, spectra, and amplitude envelopes. Includes implementation of vocalic speech envelope analysis (fft_spectrum) technique and example data (mm1) from Tilsen, S., & Johnson, K. (2008) <doi:10.1121/1.2947626>.
Ridge regression due to Hoerl and Kennard (1970)<DOI:10.1080/00401706.1970.10488634> and generalized ridge regression due to Yang and Emura (2017)<DOI:10.1080/03610918.2016.1193195> with optimized tuning parameters. These ridge regression estimators (the HK estimator and the YE estimator) are computed by minimizing the cross-validated mean squared errors. Both the ridge and generalized ridge estimators are applicable for high-dimensional regressors (p>n), where p is the number of regressors, and n is the sample size.
This package provides a collection of methods for estimating the basic reproduction number (R0) of infectious diseases. Features a web application to interface with the estimators. Uses the models from: Fisman et al. (2013) <DOI:10.1371/journal.pone.0083622>, Bettencourt and Ribeiro (2008) <DOI:10.1371/journal.pone.0002185>, and White and Pagano (2008) <DOI:10.1002/sim.3136>. Includes datasets for Canadian national and provincial COVID-19 case counts provided by Berry et al. (2021) <DOI:10.1038/s41597-021-00955-2>.
Non-linear transformations of data to better discover latent effects. Applies a sequence of three transformations (1) a Gaussianizing transformation, (2) a Z-score transformation, and (3) an outlier removal transformation. A publication describing the method has the following citation: Gregory J. Hunt, Mark A. Dane, James E. Korkola, Laura M. Heiser & Johann A. Gagnon-Bartsch (2020) "Automatic Transformation and Integration to Improve Visualization and Discovery of Latent Effects in Imaging Data", Journal of Computational and Graphical Statistics, <doi:10.1080/10618600.2020.1741379>.
This package performs all steps in the credit scoring process. This package allows the user to follow all the necessary steps for building an effective scorecard. It provides the user functions for coarse binning of variables, Weights of Evidence (WOE) transformation, variable clustering, custom binning, visualization, and scaling of logistic regression coefficients. The results will generate a scorecard that can be used as an effective credit scoring tool to evaluate risk. For complete details on the credit scoring process, see Siddiqi (2005, ISBN:047175451X).
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The rdpower package provides tools to perform power, sample size and MDE calculations in RD designs: rdpower() calculates the power of an RD design, rdsampsi() calculates the required sample size to achieve a desired power and rdmde() calculates minimum detectable effects. See Cattaneo, Titiunik and Vazquez-Bare (2019) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2019_Stata.pdf> for further methodological details.
This package implements clustering of microarray gene expression profiles according to functional annotations. For each term genes are annotated to, splits into two subclasses are computed and a significance of the supporting gene set is determined.
The affyILM package is a preprocessing tool which estimates gene expression levels for Affymetrix Gene Chips. Input from physical chemistry is employed to first background subtract intensities before calculating concentrations on behal of the Langmuir model.
This package helps you to automate R package and project setup tasks that are otherwise performed manually. This includes setting up unit testing, test coverage, continuous integration, Git, GitHub integration, licenses, Rcpp, RStudio projects, and more.