Track and document dplyr data pipelines. As you filter, mutate, and join your way through a data set, dtrackr seamlessly keeps track of your data flow and makes publication ready documentation of a data pipeline simple.
This package implements the conditional estimation procedure of Lee, Sun, Sun and Taylor (2016) <doi:10.1214/15-AOS1371>. This procedure allows hypothesis testing on the mean of a normal random vector subject to linear constraints.
This package provides a fast and scalable linear mixed-effects model (LMM) estimation algorithm for analysis of single-cell differential expression. The algorithm uses summary-level statistics and requires less computer memory to fit the LMM.
This package provides a collection of functions designed to retrieve, filter and spatialize data from the Flora e Funga do Brasil dataset. For more information about the dataset, please visit <https://floradobrasil.jbrj.gov.br/consulta/>.
This package provides curly braces and square brackets in ggplot2 plus matching text. stat_brace() plots braces/brackets to embrace data. stat_bracetext() plots corresponding text, fitting to the braces from stat_brace().
Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models.
This package provides functions to read, process and analyse accelerometer data related to mechanical loading variables. This package is developed and tested for use with raw accelerometer data from triaxial ActiGraph <https://theactigraph.com> accelerometers.
Evaluating if values of vectors are within different open/closed intervals (`x %[]% c(a, b)`), or if two closed intervals overlap (`c(a1, b1) %[]o[]% c(a2, b2)`). Operators for negation and directional relations also implemented.
Create regression tables from generalized linear model(GLM), generalized estimating equation(GEE), generalized linear mixed-effects model(GLMM), Cox proportional hazards model, survey-weighted generalized linear model(svyglm) and survey-weighted Cox model results for publication.
Estimating the number of essential genes in a genome on the basis of data from a random transposon mutagenesis experiment, through the use of a Gibbs sampler. Lamichhane et al. (2003) <doi:10.1073/pnas.1231432100>.
Semissupervised model for geographical document classification (Watanabe 2018) <doi:10.1080/21670811.2017.1293487>. This package currently contains seed dictionaries in English, German, French, Spanish, Italian, Russian, Hebrew, Arabic, Turkish, Japanese and Chinese (Simplified and Traditional).
This package provides a system for calculating the minimum total sample size needed to achieve a prespecified power or the optimal allocation for each treatment group with a fixed total sample size to maximize the power.
Supports the modeling of ordinal random variables, like the outcomes of races, via Softmax regression, under the Harville <doi:10.1080/01621459.1973.10482425> and Henery <doi:10.1111/j.2517-6161.1981.tb01153.x> models.
Facilitates analysis of paleontological sequences of trait values. Functions are provided to fit, using maximum likelihood, simple evolutionary models (including unbiased random walks, directional evolution,stasis, Ornstein-Uhlenbeck, covariate-tracking) and complex models (punctuation, mode shifts).
This package provides a shiny app that allows to access and use the INVEKOS API for field polygons in Austria. API documentation is available at <https://gis.lfrz.gv.at/api/geodata/i009501/ogc/features/v1/>.
Simulate dose regimens for pharmacokinetic-pharmacodynamic (PK-PD) models described by differential equation (DE) systems. Simulation using ADVAN-style analytical equations is also supported (Abuhelwa et al. (2015) <doi:10.1016/j.vascn.2015.03.004>).
This package provides a set of tools to implement the non-parametric bounds and Bayesian methods for assessing post-treatment bias developed in Blackwell, Brown, Hill, Imai, and Yamamoto (2025) <doi:10.1017/pan.2025.3>.
An algorithm for identifying high-resolution driver elements for datasets from a high-definition reporter assay library. Xinchen Wang, Liang He, Sarah Goggin, Alham Saadat, Li Wang, Melina Claussnitzer, Manolis Kellis (2017) <doi:10.1101/193136>.
This package provides a collection of recycled and modified R functions to aid in file manipulation, data exploration, wrangling, optimization, and object manipulation. Other functions aid in convenient data visualization, loop progression, software packaging, and installation.
Secure handling of API keys can be difficult. This package provides secure convenience functions for entering / handling API keys and opening connections via inversion of control on those keys. Works seamlessly between production and developer environments.
Training and validation of a custom (or data-driven) Structural Equation Models using Deep Neural Networks or Machine Learning algorithms, which extend the fitting procedures of the SEMgraph R package <doi:10.32614/CRAN.package.SEMgraph>.
Instance feature calculation and evolutionary instance generation for the traveling salesman problem. Also contains code to "morph" two TSP instances into each other. And the possibility to conveniently run a couple of solvers on TSP instances.
The goal of this package will be to provide a simple interface for automatic machine learning that fits the tidymodels framework. The intention is to work for regression and classification problems with a simple verb framework.
This package provides an htmlwidgets interface to VChart.js'. VChart', more than just a cross-platform charting library, but also an expressive data storyteller. VChart examples and documentation are available here: <https://www.visactor.io/vchart>.