Easily create alerts, notifications, modals, info tips and loading screens in Shiny'. Includes several options to customize alerts and notifications by including text, icons, images and buttons. When wrapped around a Shiny output, loading screen is automatically displayed while the output is being recalculated.
Generate simulated datasets from an initial underlying distribution and apply transformations to obtain realistic data. Implements the NORTA (Normal-to-anything) approach from Cario and Nelson (1997) and other data generating mechanisms. Simple network visualization tools are provided to facilitate communicating the simulation setup.
This package implements an algorithm for variable selection in high-dimensional linear regression using the "tilted correlation", a new way of measuring the contribution of each variable to the response which takes into account high correlations among the variables in a data-driven way.
Swift and seamless Single Sign-On (SSO) integration. Designed for effortless compatibility with popular Single Sign-On providers like Google and Microsoft, it streamlines authentication, enhancing both user experience and application security. Elevate your shiny applications for a simplified, unified, and secure authentication process.
The project is intended to support the use of sequins(synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard library for quantitative analysis, modelling, and visualization of spike-in controls.
VoltRon
is a novel spatial omic analysis toolbox for multi-omics integration using spatial image registration. VoltRon
is capable of analyzing multiple types and modalities of spatially-aware datasets. VoltRon
visualizes and analyzes regions of interests (ROIs), spots, cells and even molecules.
This package provides algorithms for accelerating the convergence of slow, monotone sequences from smooth, contraction mapping such as the EM algorithm. It can be used to accelerate any smooth, linearly convergent acceleration scheme. A tutorial style introduction to this package is available in a vignette.
This package contains three main functions including stddiff.numeric()
, stddiff.binary()
and stddiff.category()
. These are used to calculate the standardized difference between two groups. It is especially used to evaluate the balance between two groups before and after propensity score matching.
This package provides functions to compare a model object to a comparison object. If the objects are not identical, the functions can be instructed to explore various modifications of the objects (e.g., sorting rows, dropping names) to see if the modified versions are identical.
This package provides a set of simple functions that transforms longitudinal data to estimate the cosinor linear model as described in Tong (1976). Methods are given to summarize the mean, amplitude and acrophase, to predict the mean annual outcome value, and to test the coefficients.
YARD is a documentation generation tool for the Ruby programming language. It enables the user to generate consistent, usable documentation that can be exported to a number of formats very easily, and also supports extending for custom Ruby constructs such as custom class level definitions.
YARD is a documentation generation tool for the Ruby programming language. It enables the user to generate consistent, usable documentation that can be exported to a number of formats very easily, and also supports extending for custom Ruby constructs such as custom class level definitions.
Decoupled (e.g. separate averages) and censored (e.g. > 100 species) variables are continually reported by many well-established organizations (e.g. World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), World Bank, and various national censuses). The challenge therefore is to infer what the original data could have been given summarized information. We present an R package that reverse engineers decoupled and/or censored count data with two main functions. The cnbinom.pars function estimates the average and dispersion parameter of a censored univariate frequency table. The rec function reverse engineers summarized data into an uncensored bivariate table of probabilities.
cl-ratify
is a collection of utilities to perform validation checks and parsing. The main intention of usage for this is in web-applications in order to check form inputs for correctness and automatically parse them into their proper representations or return meaningful errors.
Create data that displays generative art when mapped into a ggplot2 plot. Functionality includes specialized data frame creation for geometric shapes, tools that define artistic color palettes, tools for geometrically transforming data, and other miscellaneous tools that are helpful when using ggplot2 for generative art.
Calculation of physical (e.g. aerodynamic conductance, surface temperature), and physiological (e.g. canopy conductance, water-use efficiency) ecosystem properties from eddy covariance data and accompanying meteorological measurements. Calculations assume the land surface to behave like a big-leaf and return bulk ecosystem/canopy variables.
This package provides a novel data-augmentation Markov chain Monte Carlo sampling algorithm to fit a progressive compartmental model of disease in a Bayesian framework Morsomme, R.N., Holloway, S.T., Ryser, M.D. and Xu J. (2024) <doi:10.48550/arXiv.2408.14625>
.
For multiple testing. Computes estimates and confidence bounds for the False Discovery Proportion (FDP), the fraction of false positives among all rejected hypotheses. The methods in the package use permutations of the data. Doing so, they take into account the dependence structure in the data.
This package performs forward and backwards stepwise regression for the Proportional subdistribution hazards model in competing risks (Fine & Gray 1999). Procedure uses AIC, BIC and BICcr as selection criteria. BICcr has a penalty of k = log(n*), where n* is the number of primary events.
We aim to deal with the average treatment effect (ATE), where the data are subject to high-dimensionality and measurement error. This package primarily contains two functions, which are used to generate artificial data and estimate ATE with high-dimensional and error-prone data accommodated.
This package implements the three-step workflow for robust analysis of change in two repeated measurements of continuous outcomes, described in Ning et al. (in press), "Robust estimation of the effect of an exposure on the change in a continuous outcome", BMC Medical Research Methodology.
Computes and visualize the results of the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) <DOI:10.1137/080718851>. The algorithm is available in parallel for the independent values of parameter c. Additionally, fast RQA is added to distinguish chaos from noise.
This package provides a daily summary of COVID-19 cases, deaths, recovered, tests, vaccinations, and hospitalizations for 230+ countries, 760+ regions, and 12000+ administrative divisions of lower level. Includes policy measures, mobility data, and geospatial identifiers. Data source: COVID-19 Data Hub <https://covid19datahub.io>.
An implementation of Fan plots for cytometry data in ggplot2'. For reference see Britton, E.; Fisher, P. & J. Whitley (1998) The Inflation Report Projections: Understanding the Fan Chart <https://www.bankofengland.co.uk/quarterly-bulletin/1998/q1/the-inflation-report-projections-understanding-the-fan-chart>).