This package provides methods for modeling moderator variables in cross-sectional, temporal, and multi-level networks. Includes model selection techniques and a variety of plotting functions. Implements the methods described by Swanson (2020) <https://www.proquest.com/openview/d151ab6b93ad47e3f0d5e59d7b6fd3d3>.
This package provides methods for determining optimum plot size and shape in field experiments using Fairfield-Smith's variance law approach. It will evaluate field variability, determine optimum plot size and shape and study fertility trends across the field.
This package provides a collection of miscellaneous functions for passive acoustics. Much of the content here is adapted to R from code written by other people. If you have any ideas of functions to add, please contact Taiki Sakai.
This package provides tools to process legacy format summary redistricting data files produced by the United States Census Bureau pursuant to P.L. 94-171. These files are generally available earlier but are difficult to work with as-is.
Data from All the World's Primates relational SQL database and other tabular datasets are made available via drivers and connection functions. Additionally we provide several functions and examples to facilitate the merging and aggregation of these tabular inputs.
Execute multi-step SQL workflows by leveraging specially formatted comments to define and control execution. This enables users to mix queries, commands, and metadata within a single script. Results are returned as named objects for use in downstream workflows.
We provide functions for estimation and inference of locally-stationary time series using the sieve methods and bootstrapping procedure. In addition, it also contains functions to generate Daubechies and Coiflet wavelet by Cascade algorithm and to process data visualization.
Generate objects that simulate survival times. Random values for the distributions are generated using the method described by Bender (2003) <https://epub.ub.uni-muenchen.de/id/eprint/1716> and Leemis (1987) in Operations Research, 35(6), 892รข 894.
This package implements the methodological developments found in Hermes (2025) <doi:10.48550/arXiv.2503.02786>, and allows for the statistical modeling of data consisting of multiple users that provide an ordinal rating for one or multiple items.
Sparse-group boosting to be used in conjunction with the mboost for modeling grouped data. Applicable to all sparse-group lasso type problems where within-group and between-group sparsity is desired. Interprets and visualizes individual variables and groups.
Core parts of the C API of R are wrapped in a C++ namespace via a set of inline functions giving a tidier representation of the underlying data structures and functionality using a header-only implementation without additional dependencies.
This package implements D-vine quantile regression models with parametric or nonparametric pair-copulas. See Kraus and Czado (2017) <doi:10.1016/j.csda.2016.12.009> and Schallhorn et al. (2017) <doi:10.48550/arXiv.1705.08310>.
The Tabular Matrix Problems via Pseudoinverse Estimation (TMPinv) is a two-stage estimation method that reformulates structured table-based systems - such as allocation problems, transaction matrices, and input-output tables - as structured least-squares problems. Based on the Convex Least Squares Programming (CLSP) framework, TMPinv solves systems with row and column constraints, block structure, and optionally reduced dimensionality by (1) constructing a canonical constraint form and applying a pseudoinverse-based projection, followed by (2) a convex-programming refinement stage to improve fit, coherence, and regularization (e.g., via Lasso, Ridge, or Elastic Net).
The minimal rrapply'-package contains a single function rrapply(), providing an extended implementation of R'-base rapply() by allowing to recursively apply a function to elements of a nested list based on a general condition function and including the possibility to prune or aggregate nested list elements from the result. In addition, special arguments can be supplied to access the name, location, parents and siblings in the nested list of the element under evaluation. The rrapply() function builds upon rapply()'s native C implementation and requires no other package dependencies.
This package provides R functions for common pre-processing steps that are applied on 1H-NMR data. It also provides a function to read the FID signals directly in the Bruker format.
This package provides statistical methods for differential discovery analyses in high-dimensional cytometry data (including flow cytometry, mass cytometry or CyTOF, and oligonucleotide-tagged cytometry), based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics.
This package provides per-exon and per-gene read counts computed for selected genes from RNA-seq data that were presented in the article 'Conservation of an RNA regulatory map between Drosophila and mammals' by Brooks et al., Genome Research 2011.
This package provides a collection of methods to extract gene programs from single-cell gene expression data using non-negative matrix factorization (NMF). GeneNMF contains functions to directly interact with the Seurat toolkit and derive interpretable gene program signatures.
This package provides convenience functions for advanced linear algebra with tensors and computation with datasets of tensors on a higher level abstraction. It includes Einstein and Riemann summing conventions, dragging, co- and contravariate indices, and parallel computations on sequences of tensors.
This package implements tools for manipulation of digital images and the Propagation Separation approach by Polzehl and Spokoiny (2006) <DOI:10.1007/s00440-005-0464-1> for smoothing digital images, see Polzehl and Tabelow (2007) <DOI:10.18637/jss.v019.i01>.
This package offers methods to perform asymptotically bias-corrected regularized linear discriminant analysis (ABC_RLDA) for cost-sensitive binary classification. The bias-correction is an estimate of the bias term added to regularized discriminant analysis that minimizes the overall risk.
This R package provides access to the Qtlizer web server. Qtlizer annotates lists of common small variants (mainly SNPs) and genes in humans with associated changes in gene expression using the most comprehensive database of published quantitative trait loci (QTLs).
Example spatial transcriptomics datasets with Simple Feature annotations as SpatialFeatureExperiment objects. Technologies include Visium, slide-seq, Nanostring CoxMX, Vizgen MERFISH, and 10X Xenium. Tissues include mouse skeletal muscle, human melanoma metastasis, human lung, breast cancer, and mouse liver.
This package provides a weekly summary of Hass Avocado sales for the contiguous US from January 2017 through December 20204. See the package website for more information, documentation, and examples. Data source: Haas Avocado Board <https://hassavocadoboard.com/category-data/>.