This package provides a flexible framework for definition and application of time/depth- based rules for sets of parameters for single grains that can be used to create artificial sediment profiles. Such profiles can be used for virtual sample preparation and synthetic, for instance, luminescence measurements.
Extends the functionality of the package Synth as detailed in Abadie, Diamond, and Hainmueller (2011) <doi:10.18637/jss.v042.i13>. Includes generating and plotting placebos, post/pre-MSPE (Mean Squared Prediction Error) significance tests and plots, and calculating average treatment effects for multiple treated units.
When updating major or minor R versions all packages should be re-installed. The utilities in this package assist in getting a user up-and-running again by installing all previously installed R packages. The package uses renv to install; immediately replenishing your renv package cache.
The two main functions in the package are pairwiseAlignment
and stringDist
. The former solves (Needleman-Wunsch) global alignment, (Smith-Waterman) local alignment, and (ends-free) overlap alignment problems. The latter computes the Levenshtein edit distance or pairwise alignment score matrix for a set of strings.
This package provides an R implementation of the Octave package signal
, containing a variety of signal processing tools, such as signal generation and measurement, correlation and convolution, filtering, filter design, filter analysis and conversion, power spectrum analysis, system identification, decimation and sample rate change, and windowing.
This package provides a set of restricted permutation designs for freely exchangeable, line transects (time series), spatial grid designs and permutation of blocks (groups of samples). permute
also allows split-plot designs, in which the whole-plots or split-plots or both can be freely exchangeable.
This package provides computationally efficient tools related to the multivariate normal and Student's t distributions. The main functionalities are: simulating multivariate random vectors, evaluating multivariate normal or Student's t densities and Mahalanobis distances. These tools are developed using C++ code and of the OpenMP API.
Define distribution families and fit them to interval-censored and interval-truncated data, where the truncation bounds may depend on the individual observation. The defined distributions feature density, probability, sampling and fitting methods as well as efficient implementations of the log-density log f(x) and log-probability log P(x0 <= X <= x1) for use in TensorFlow
neural networks via the tensorflow package. Allows training parametric neural networks on interval-censored and interval-truncated data with flexible parameterization. Applications include Claims Development in Non-Life Insurance, e.g. modelling reporting delay distributions from incomplete data, see Bücher, Rosenstock (2022) <doi:10.1007/s13385-022-00314-4>.
The Aquo Standard is the Dutch Standard for the exchange of data in water management. With *aquodom* (short for aquo domaintables) it is easy to exploit the API (<https://www.aquo.nl/index.php/Hoofdpagina>) to download domaintables of the Aquo Standard and use them in R.
Implementation of adaptive p-value thresholding (AdaPT
), including both a framework that allows the user to specify any algorithm to learn local false discovery rate and a pool of convenient functions that implement specific algorithms. See Lei, Lihua and Fithian, William (2016) <arXiv:1609.06035>
.
This package provides a Bayesian smoothing method for post-processing of remote sensing image classification which refines the labelling in a classified image in order to enhance its classification accuracy. Combines pixel-based classification methods with a spatial post-processing method to remove outliers and misclassified pixels.
Price credit default swaps using C code from the International Swaps and Derivatives Association CDS Standard Model. See <https://www.cdsmodel.com/cdsmodel/documentation.html> for more information about the model and <https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html> for license details for the C code.
This package provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. Allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients.
This package provides a set of functions to implement the Combined Compromise Solution (CoCoSo
) Method created by Yazdani, Zarate, Zavadskas and Turskis (2019) <doi:10.1108/MD-05-2017-0458>. This method is based on an integrated simple additive weighting and compromise exponentially weighted product model.
It provides the subset operator for dist objects and a function to compute medoid(s) that are fully parallelized leveraging the RcppParallel
package. It also provides functions for package developers to easily implement their own parallelized dist()
function using a custom C++'-based distance function.
Designed for network analysis, leveraging the personalized PageRank
algorithm to calculate node scores in a given graph. This innovative approach allows users to uncover the importance of nodes based on a customized perspective, making it particularly useful in fields like bioinformatics, social network analysis, and more.
Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-function regression models, are fitted by a component-wise gradient boosting algorithm. For a manual on how to use FDboost', see Brockhaus, Ruegamer, Greven (2017) <doi:10.18637/jss.v094.i10>.
This package provides color palettes designed to be reminiscent of text on paper. The color schemes were taken from <https://stephango.com/flexoki>. Includes discrete, continuous, and binned scales that are not necessarily color-blind friendly. Simple scale and theme functions are available for use with ggplot2'.
Write SARIMA models in (finite) AR representation and simulate generalized multiplicative seasonal autoregressive moving average (time) series with Normal / Gaussian, Poisson or negative binomial distribution. The methodology of this method is described in Briet OJT, Amerasinghe PH, and Vounatsou P (2013) <doi:10.1371/journal.pone.0065761>.
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.
Estimates treatment effects using covariate adjustment methods in Randomized Clinical Trials (RCT) motivated by higher-order influence functions (HOIF). Provides point estimates, oracle bias, variance, and approximate variance for HOIF-adjusted estimators. For methodology details, see Zhao et al. (2024) <doi:10.48550/arXiv.2411.08491>
.
Uses data and researcher's beliefs on measurement error and instrumental variable (IV) endogeneity to generate the space of consistent beliefs across measurement error, instrument endogeneity, and instrumental relevance for IV regressions. Package based on DiTraglia
and Garcia-Jimeno (2020) <doi:10.1080/07350015.2020.1753528>.
Calibration and risk-set calibration methods for fitting Cox proportional hazard model when a binary covariate is measured intermittently. Methods include functions to fit calibration models from interval-censored data and modified partial likelihood for the proportional hazard model, Nevo et al. (2018+) <arXiv:1801.01529>
.
This package provides methods for selecting the optimal bandwidth in kernel density estimation for dependent samples, such as those generated by Markov chain Monte Carlo (MCMC). Implements a modified biased cross-validation (mBCV
) approach that accounts for sample dependence, improving the accuracy of estimated density functions.