The Reactive Extensions for C++ (RxCpp) is a library of algorithms for values-distributed-in-time. ReactiveX is a library for composing asynchronous and event-based programs by using observable sequences.
It extends the observer pattern to support sequences of data and/or events and adds operators that allow you to compose sequences together declaratively while abstracting away concerns about things like low-level threading, synchronization, thread-safety, concurrent data structures, and non-blocking I/O.
This package provides tools for evaluating timely epidemic detection models within school absenteeism-based surveillance systems. Introduces the concept of alert time quality as an evaluation metric. Includes functions to simulate populations, epidemics, and alert metrics associated with epidemic spread using population census data. The methods are based on research published in Vanderkruk et al. (2023) <doi:10.1186/s12889-023-15747-z> and Ward et al. (2019) <doi:10.1186/s12889-019-7521-7>.
Using the Theory of Belief Functions for evidence calculus. Basic probability assignments, or mass functions, can be defined on the subsets of a set of possible values and combined. A mass function can be extended to a larger frame. Marginalization, i.e. reduction to a smaller frame can also be done. These features can be combined to analyze small belief networks and take into account situations where information cannot be satisfactorily described by probability distributions.
This package provides a system for importing electrophysiological signal, based on the Waveform Database (WFDB) software package, written by Moody et al 2022 <doi:10.13026/gjvw-1m31>. A wrapper for utilizing WFDB functions for reading and writing signal data, as well as functions for visualization and analysis are provided. A stable and broadly compatible class for working with signal data, supporting the reading in of cardiac electrophysiogical files such as intracardiac electrograms, is introduced.
Enables the generation of Laplace factor models across diverse Laplace distributions and facilitates the application of Sparse Online Principal Component (SOPC), Incremental Principal Component (IPC), Perturbation Principal Component (PPC), Stochastic Approximation Principal Component (SAPC), Sparse Principal Component (SPC) and other PC methods and Farm Test methods to these models. Evaluates the efficacy of these methods within the context of Laplace factor models by scrutinizing parameter estimation accuracy, mean square error, and the degree of sparsity.
Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software. Some features are 1) CDISC SDTM terms 2) Automatic slope selection with the same criterion of WinNonlin(R
) 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Eco-phylogenetic and community phylogenetic analyses. Keeps community ecological and phylogenetic data matched up and comparable using comparative.comm objects. Wrappers for common community phylogenetic indices ('pez.shape', pez.evenness', pez.dispersion', and pez.dissimilarity metrics). Implementation of Cavender-Bares (2004) correlation of phylogenetic and ecological matrices ('fingerprint.regression'). Phylogenetic Generalised Linear Mixed Models (PGLMMs; pglmm') following Ives & Helmus (2011) and Rafferty & Ives (2013). Simulation of null assemblages, traits, and phylogenies ('scape', sim.meta.comm').
Generates Skew Factor Models data and applies Sparse Online Principal Component (SOPC), Incremental Principal Component (IPC), Projected Principal Component (PPC), Perturbation Principal Component (PPC), Stochastic Approximation Principal Component (SAPC), Sparse Principal Component (SPC) and other PC methods to estimate model parameters. It includes capabilities for calculating mean squared error, relative error, and sparsity of the loading matrix.The philosophy of the package is described in Guo G. (2023) <doi:10.1007/s00180-022-01270-z>.
Implement the transformed additive Gaussian (TAG) process and the transformed approximately additive Gaussian (TAAG) process proposed in Lin and Joseph (2020) <DOI:10.1080/00401706.2019.1665592>. These functions can be used to model deterministic computer experiments, obtain predictions at new inputs, and quantify the uncertainty of the predictions. This research is supported by a U.S. National Science Foundation grant DMS-1712642 and a U.S. Army Research Office grant W911NF-17-1-0007.
Alternating least squares is often used to resolve components contributing to data with a bilinear structure; the basic technique may be extended to alternating constrained least squares. This package provides an implementation of multivariate curve resolution alternating least squares (MCR-ALS).
Commonly applied constraints include unimodality, non-negativity, and normalization of components. Several data matrices may be decomposed simultaneously by assuming that one of the two matrices in the bilinear decomposition is shared between datasets.
Rapid realistic routing on multimodal transport networks (walk, bike, public transport and car) using R5', the Rapid Realistic Routing on Real-world and Reimagined networks engine <https://github.com/conveyal/r5>. The package allows users to generate detailed routing analysis or calculate travel time and monetary cost matrices using seamless parallel computing on top of the R5 Java machine. While R5 is developed by Conveyal, the package r5r is independently developed by a team at the Institute for Applied Economic Research (Ipea) with contributions from collaborators. Apart from the documentation in this package, users will find additional information on R5 documentation at <https://docs.conveyal.com/>. Although we try to keep new releases of r5r in synchrony with R5, the development of R5 follows Conveyal's independent update process. Hence, users should confirm the R5 version implied by the Conveyal user manual (see <https://docs.conveyal.com/changelog>) corresponds with the R5 version that r5r depends on. This version of r5r depends on R5 v7.1.
This algorithm conducts variable selection in the classification setting. It repeatedly subsamples variables and runs linear discriminant analysis (LDA) on the subsampled variables. Variables are scored based on the AUC and the t-statistics. Variables then enter a competition and the semi-finalist variables will be evaluated in a final round of LDA classification. The algorithm then outputs a list of variable selected. Qiao, Sun and Fan (2017) <http://people.math.binghamton.edu/qiao/swa.html>.
This package provides tools to calculate trait probability density functions (TPD) at any scale (e.g. populations, species, communities). TPD functions are used to compute several indices of functional diversity, as well as its partition across scales. These indices constitute a unified framework that incorporates the underlying probabilistic nature of trait distributions into uni- or multidimensional functional trait-based studies. See Carmona et al. (2016) <doi:10.1016/j.tree.2016.02.003> for further information.
Framework for building evolutionary algorithms for both single- and multi-objective continuous or discrete optimization problems. A set of predefined evolutionary building blocks and operators is included. Moreover, the user can easily set up custom objective functions, operators, building blocks and representations sticking to few conventions. The package allows both a black-box approach for standard tasks (plug-and-play style) and a much more flexible white-box approach where the evolutionary cycle is written by hand.
This is a fast and flexible implementation of the Kalman filter and smoother, which can deal with NAs. It is entirely written in C and relies fully on linear algebra subroutines contained in BLAS and LAPACK. Due to the speed of the filter, the fitting of high-dimensional linear state space models to large datasets becomes possible. This package also contains a plot function for the visualization of the state vector and graphical diagnostics of the residuals.
This package provides functionality for constructing statistical models of transcriptomic dynamics in field conditions. It further offers the function to predict expression of a gene given the attributes of samples and meteorological data. Nagano, A. J., Sato, Y., Mihara, M., Antonio, B. A., Motoyama, R., Itoh, H., Naganuma, Y., and Izawa, T. (2012). <doi:10.1016/j.cell.2012.10.048>. Iwayama, K., Aisaka, Y., Kutsuna, N., and Nagano, A. J. (2017). <doi:10.1093/bioinformatics/btx049>.
This package contains a function called gds()
which accepts three input parameters like lower limits, upper limits and the frequencies of the corresponding classes. The gds()
function calculate and return the values of mean ('gmean'), median ('gmedian'), mode ('gmode'), variance ('gvar'), standard deviation ('gstdev'), coefficient of variance ('gcv'), quartiles ('gq1', gq2', gq3'), inter-quartile range ('gIQR
'), skewness ('g1'), and kurtosis ('g2') which facilitate effective data analysis. For skewness and kurtosis calculations we use moments.
The need for anonymization of individual survey responses often leads to many suppressed grid cells in a regular grid. Here we provide functionality for creating multi-resolution gridded data, respecting the confidentiality rules, such as a minimum number of units and dominance by one or more units for each grid cell. The functions also include the possibility for contextual suppression of data. For more details see Skoien et al. (2025) <doi:10.48550/arXiv.2410.17601>
.
This package provides efficient implementation of the Narrowest-Over-Threshold methodology for detecting an unknown number of change-points occurring at unknown locations in one-dimensional data following deterministic signal + noise model. Currently implemented scenarios are: piecewise-constant signal, piecewise-constant signal with a heavy-tailed noise, piecewise-linear signal, piecewise-quadratic signal, piecewise-constant signal and with piecewise-constant variance of the noise. For details, see Baranowski, Chen and Fryzlewicz (2019) <doi:10.1111/rssb.12322>.
Provide data generation and estimation tools for the truncated positive normal (tpn) model discussed in Gomez, Olmos, Varela and Bolfarine (2018) <doi:10.1007/s11766-018-3354-x>, the slash tpn distribution discussed in Gomez, Gallardo and Santoro (2021) <doi:10.3390/sym13112164>, the bimodal tpn distribution discussed in Gomez et al. (2022) <doi:10.3390/sym14040665>, the flexible tpn model <doi:10.3390/math11214431> and the unit tpn distribution <doi:10.1016/j.chemolab.2025.105322>.
This package uses a Bayesian hierarchical model to detect enriched regions from ChIP-chip experiments. The common goal in analyzing this ChIP-chip data is to detect DNA-protein interactions from ChIP-chip experiments. The BAC package has mainly been tested with Affymetrix tiling array data. However, we expect it to work with other platforms (e.g. Agilent, Nimblegen, cDNA, etc.). Note that BAC does not deal with normalization, so you will have to normalize your data beforehand.
Roary is a high speed stand alone pan genome pipeline, which takes annotated assemblies in GFF3 format (produced by the Prokka program) and calculates the pan genome. Using a standard desktop PC, it can analyse datasets with thousands of samples, without compromising the quality of the results. 128 samples can be analysed in under 1 hour using 1 GB of RAM and a single processor. Roary is not intended for metagenomics or for comparing extremely diverse sets of genomes.
This package is designed as an integrated package for genetic data analysis of both population and family data. Currently, it contains functions for sample size calculations of both population-based and family-based designs, probability of familial disease aggregation, kinship calculation, statistics in linkage analysis, and association analysis involving genetic markers including haplotype analysis with or without environmental covariates. Over years, the package has been developed in-between many projects hence also in line with the name (gap).
The ggplot2 package is the state-of-the-art toolbox for creating and formatting graphs. However, it is easy to forget how certain formatting commands are named and sometimes users find themselves asking: How do you rotate the x-axis labels again? Or how do you hide the legend...? This package allows users to issue natural language commands related to theme-related styling of plots (colors, font size and such), which then are translated into valid ggplot2 commands.