The package converts the input in any one of character, integer, numeric, factor, or an ordered type into POSIXct (or Date) objects, using one of a number of predefined formats, and relying on Boost facilities for date and time parsing.
This package provides a simple and light-weight API for memory profiling of R expressions. The profiling is built on top of R's built-in memory profiler utils::Rprofmem(), which records every memory allocation done by R (also native code).
The analysis and inference of faunal remains recovered from archaeological sites concerns the field of zooarchaeology. The zooaRch package provides analytical tools to make inferences on zooarchaeological data. Functions in this package allow users to read, manipulate, visualize, and analyze zooarchaeological data.
KPeg is a simple PEG library for Ruby. It provides an API as well as native grammar to build the grammar. KPeg supports direct left recursion of rules via the OMeta memoization technique.
METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill-reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes.
This package provides a suite of functions that allow the user to analyze A/B test data in a Bayesian framework. Intended to be a drop-in replacement for common frequentist hypothesis test such as the t-test and chi-sq test.
This package provides probability computation, data generation, and model estimation for fully-visible Boltzmann machines. It follows the methods described in Nguyen and Wood (2016a) <doi:10.1162/NECO_a_00813> and Nguyen and Wood (2016b) <doi:10.1109/TNNLS.2015.2425898>.
An R implementation and enhancement of the Dynamic TOPMODEL semi-distributed hydrological model originally proposed by Beven and Freer (2001) <doi:10.1002/hyp.252>. The dynatop package implements code for simulating models which can be created using the dynatopGIS package.
Generate motivational quotes and Shakespearean word combinations (bardâ bits) that a user can consider for their personal projects. Each of the package functions takes two arguments, cat which default to any, and a a numeric or character seed to ensure reproducible results.
The dataset package helps create semantically rich, machine-readable, and interoperable datasets in R. It extends tidy data frames with metadata that preserves meaning, improves interoperability, and makes datasets easier to publish, exchange, and reuse in line with ISO and W3C standards.
Efficiently impute large scale matrix with missing values via its unbiased low-rank matrix approximation. Our main approach is Hard-Impute algorithm proposed in <https://www.jmlr.org/papers/v11/mazumder10a.html>, which achieves highly computational advantage by truncated singular-value decomposition.
Computes shrinkage estimators for regression problems. Selects penalty parameter by minimizing bias and variance in the effect estimate, where bias and variance are estimated from the posterior predictive distribution. See Keller and Rice (2017) <doi:10.1093/aje/kwx225> for more details.
Simulating, visualizing and comparing tumor clonal data by using simple commands. This aims at providing a tool to help researchers to easily simulate tumor data and analyze the results of their approaches for studying the composition and the evolutionary history of tumors.
Group Bayesian Networks: This package implements the inference of group Bayesian networks based on hierarchical feature clustering, and the adaptive refinement of the grouping regarding an outcome of interest, as described in Becker et. al (2021) <doi: 10.1371/journal.pcbi.1008735>.
This package implements the hub graphical lasso and hub covariance graph proposal by Tan, KM., London, P., Mohan, K., Lee, S-I., Fazel, M., and Witten, D. (2014). Learning graphical models with hubs. Journal of Machine Learning Research 15(Oct):3297-3331.
This package implements the vine copula based kernel density estimator of Nagler and Czado (2016) <doi:10.1016/j.jmva.2016.07.003>. The estimator does not suffer from the curse of dimensionality and is therefore well suited for high-dimensional applications.
This package performs extreme value analysis at multiple locations using functions from the evd package. Supports both point-based and gridded input data using the terra package, enabling flexible looping across spatial datasets for batch processing of generalised extreme value, Gumbel fits.
This package provides utility functions for multivariate analysis (factor analysis, discriminant analysis, and others). The package is primary written for the course Multivariate analysis and for the course Computer intensive methods at the masters program of Applied Statistics at University of Ljubljana.
Given a CSV file with titles and abstracts, the package creates a document-term matrix that is lemmatized and stemmed and can directly be used to train machine learning methods for automatic title-abstract screening in the preparation of a meta analysis.
Various kinds of plots (observations, variables, correlations, weights, regression coefficients and Variable Importance in the Projection) and aids to interpretation (coefficients, Q2, correlations, redundancies) for partial least squares regressions computed with the pls package, following Tenenhaus (1998, ISBN:2-7108-0735-1).
Compute important quantities when we consider stochastic systems that are observed continuously. Such as, Cost model, Limiting distribution, Transition matrix, Transition distribution and Occupancy matrix. The methods are described, for example, Ross S. (2014), Introduction to Probability Models. Eleven Edition. Academic Press.
This package provides a programmatic interface to the OpenM++ microsimulation platform (<https://openmpp.org>). The primary goal of this package is to wrap the OpenM++ Web Service (OMS) to provide OpenM++ users a programmatic interface for the R language.
This package provides a shiny application for teaching introductory quantitative genetics and plant breeding through interactive simulations. The application relies on established plant breeding and quantitative genetic theory found in Falconer and Mackay (1996, ISBN:0582243025) and Bernardo (2010, ISBN:978-0972072427).
Algorithm to estimate the Sobol indices using a non-parametric fit of the regression curve. The bandwidth is estimated using bootstrap to reduce the finite-sample bias. The package is based on the paper Solà s, M. (2018) <arXiv:1803.03333>.