Extends invariant causal prediction (Peters et al., 2016, <doi:10.1111/rssb.12167>) to generalized linear and transformation models (Hothorn et al., 2018, <doi:10.1111/sjos.12291>). The methodology is described in Kook et al. (2023, <doi:10.1080/01621459.2024.2395588>).
This package contains core functions to process and analyze drug response data. The package provides tools for normalizing, averaging, and calculation of gDR metrics data. All core functions are wrapped into the pipeline function allowing analyzing the data in a straightforward way.
svglite is a graphics device that produces clean SVG (Scalable Vector Graphics) output, suitable for use on the web, or hand editing. Compared to the built-in svg(), svglite is considerably faster, produces smaller files, and leaves text as is.
This package performs the Baumgartner-Weiss-Schindler two-sample test of equal probability distributions (doi:10.2307/2533862). It also performs similar rank-based tests for equal probability distributions due to Neuhauser (doi:10.1080/10485250108832874) and Murakami (doi:10.1080/00949655.2010.551516).
This package implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix.
This package provides an implementation of evaluation metrics in R that are commonly used in supervised machine learning. It implements metrics for regression, time series, binary classification, classification, and information retrieval problems. It has zero dependencies and a consistent, simple interface for all functions.
NanoString nCounter is a medium-throughput platform that measures gene or microRNA expression levels. Here is a publication that introduces this platform: Malkov (2009) <doi:10.1186/1756-0500-2-80>. Here is the webpage of NanoString nCounter where you can find detailed information about this platform <https://www.nanostring.com/scientific-content/technology-overview/ncounter-technology>. It has great clinical application, such as diagnosis and prognosis of cancer. Implements integrated system of random-coefficient hierarchical regression model to normalize data from NanoString nCounter platform so that noise from various sources can be removed.
This package is a computational tool box for radio-genomic analysis which integrates radio-response data, radio-biological modelling and comprehensive cell line annotations for hundreds of cancer cell lines. The RadioSet class enables creation and manipulation of standardized datasets including information about cancer cells lines, radio-response assays and dose-response indicators. Included methods allow fitting and plotting dose-response data using established radio-biological models along with quality control to validate results. Additional functions related to fitting and plotting dose response curves, quantifying statistical correlation and calculating AUC or SF are included.
Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Supports parallel projections including oblique projections such as the cabinet projection as well as axonometric projections such as the isometric projection. Use grid's "affine transformation" feature to render illustrated flat surfaces.
Facilitates access to the data from the Atlas do Estado Brasileiro (<https://www.ipea.gov.br/atlasestado/>), maintained by the Instituto de Pesquisa Econômica Aplicada (Ipea). It allows users to search for specific series, list series or themes, and download data when available.
Inference on the marginal model of the mixed effect model with the Box-Cox transformation and on the model median differences between treatment groups for longitudinal randomized clinical trials. These statistical methods are proposed by Maruo et al. (2017) <doi:10.1002/sim.7279>.
Selecting linear and generalized linear models for large data sets using modified stepwise procedure and modern selection criteria (like modifications of Bayesian Information Criterion). Selection can be performed on data which exceed RAM capacity. Bogdan et al., (2004) <doi:10.1534/genetics.103.021683>.
Retrieves crypto currency information and historical prices as well as information on the exchanges they are listed on. Historical data contains daily open, high, low and close values for all crypto currencies. All data is scraped from <https://coinmarketcap.com> via their web-api'.
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a conditional GEE for recurrent event gap times, as described by Clement and Strawderman (2009) in the journal Biostatistics. Makes a parametric assumption for the length of the censored gap time.
Compare detrital zircon suites by uploading univariate, U-Pb age, or bivariate, U-Pb age and Lu-Hf data, in a shiny'-based user-interface. Outputs publication quality figures using ggplot2', and tables of statistics currently in use in the detrital zircon geochronology community.
Forecasting univariate time series with different decomposition based Extreme Learning Machine models. For method details see Yu L, Wang S, Lai KK (2008). <doi:10.1016/j.eneco.2008.05.003>, Parida M, Behera MK, Nayak N (2018). <doi:10.1109/ICSESP.2018.8376723>.
Create interactive visualization charts to draw data in three dimensional graphs. The graphs can be included in Shiny apps and R markdown documents, or viewed from the R console and RStudio Viewer. Based on the vis.js Graph3d module and the htmlwidgets R package.
Interface for the GitHub API that enables efficient management of courses on GitHub. It has a functionality for managing organizations, teams, repositories, and users on GitHub and helps automate most of the tedious and repetitive tasks around creating and distributing assignments.
Create a user-friendly plotting GUI for R'. In addition, one purpose of creating the R package is to facilitate third-party software to call R for drawing, for example, Phoenix WinNonlin software calls R to draw the drug concentration versus time curve.
This package performs genetic algorithm (Scrucca, L (2013) <doi:10.18637/jss.v053.i04>) assisted genomic best liner unbiased prediction for genomic selection. It also provides a binning method in natural population for genomic selection under the principle of linkage disequilibrium for dimensional reduction.
This package contains two main functions: one for solving general isotone regression problems using the pool-adjacent-violators algorithm (PAVA); another one provides a framework for active set methods for isotone optimization problems with arbitrary order restrictions. Various types of loss functions are prespecified.
This package contains tools for instrumental variables estimation. Currently, non-parametric bounds, two-stage estimation and G-estimation are implemented. Balke, A. and Pearl, J. (1997) <doi:10.2307/2965583>, Vansteelandt S., Bowden J., Babanezhad M., Goetghebeur E. (2011) <doi:10.1214/11-STS360>.
Highly optimized toolkit for approximately solving L0-regularized learning problems (a.k.a. best subset selection). The algorithms are based on coordinate descent and local combinatorial search. For more details, check the paper by Hazimeh and Mazumder (2020) <doi:10.1287/opre.2019.1919>.
Computationally efficient functions to provide direct likelihood-based inference for partially-observed multivariate birth-death processes. Such processes range from a simple Yule model to the complex susceptible-infectious-removed model in disease dynamics. Efficient likelihood evaluation facilitates maximum likelihood estimation and Bayesian inference.