ISA is a metadata framework to manage an increasingly diverse set of life science, environmental and biomedical experiments. In isatabr methods for reading, modifying and writing of files in the ISA-Tab format are implemented. It also contains methods for processing assay data.
Multi-step adaptive elastic-net (MSAENet) algorithm for feature selection in high-dimensional regressions proposed in Xiao and Xu (2015) <DOI:10.1080/00949655.2015.1016944>, with support for multi-step adaptive MCP-net (MSAMNet) and multi-step adaptive SCAD-net (MSASNet) methods.
This package performs treatment allocation in two-arm clinical trials by the maximal procedure described by Berger et al. (2003) <doi:10.1002/sim.1538>. To that end, the algorithm provided by Salama et al. (2008) <doi:10.1002/sim.3014> is implemented.
This package provides a collection of functions to connect to a Moodle database, cache relevant tables locally and generate learning analytics. Moodle is an open source Learning Management System (LMS) developed by MoodleHQ. For more information about Moodle, visit <https://moodle.org>.
This package provides tools for animal movement modelling using hidden Markov models. These include processing of tracking data, fitting hidden Markov models to movement data, visualization of data and fitted model, decoding of the state process, etc. <doi:10.1111/2041-210X.12578>.
This package provides programmatic access to the Open Experience Sampling Method ('openESM') database (<https://openesmdata.org>), a collection of harmonized experience sampling datasets. The package enables researchers to discover, download, and work with the datasets while ensuring proper citation and license compliance.
An interface to easily run local language models with Ollama <https://ollama.com> server and API endpoints (see <https://github.com/ollama/ollama/blob/main/docs/api.md> for details). It lets you run open-source large language models locally on your machine.
Generates simple and beautiful one-page HTML reference manuals with package documentation. Math rendering and syntax highlighting are done server-side in R such that no JavaScript libraries are needed in the browser, which makes the documentation portable and fast to load.
This package provides a set of datasets and functions used in the book Modele liniowe i mieszane w R, wraz z przykladami w analizie danych'. Datasets either come from real studies or are created to be as similar as possible to real studies.
Makes output files from select PreSens Fiber Optic Oxygen Transmitters easier to work with in R. See <http://www.presens.de> for more information about PreSens (Precision Sensing GmbH). Note: this package is neither created nor maintained by PreSens.
Download and generate summaries for the rodent, plant, ant, and weather data from the Portal Project. Portal is a long-term (and ongoing) experimental monitoring site in the Chihuahuan desert. The raw data files can be found at <https://github.com/weecology/portaldata>.
Chooses subgroup specific optimal doses in a phase I dose finding clinical trial allowing for subgroup combination and simulates clinical trials under the subgroup specific time to event continual reassessment method. Chapple, A.G., Thall, P.F. (2018) <doi:10.1002/pst.1891>.
Estimation of an S-shaped function and its corresponding inflection point via a least squares approach. A sequential mixed primal-dual based algorithm is implemented for the fast computation. Details can be found in Feng et al. (2022) <doi:10.1111/rssb.12481>.
This package provides a sparklyr extension package providing an integration with Google BigQuery'. It supports direct import/export where records are directly streamed from/to BigQuery'. In addition, data may be imported/exported via intermediate data extracts on Google Cloud Storage'.
Likelihood-based methods for model fitting and assessment, prediction and intervention analysis of count time series following generalized linear models are provided. Models with the identity and with the logarithmic link function are allowed. The conditional distribution can be Poisson or Negative Binomial.
Generate tables, listings, and graphs (TLG) using tidyverse'. Tables can be created functionally, using a standard TLG process, or by specifying table and column metadata to create generic analysis summaries. The envsetup package can also be leveraged to create environments for table creation.
Extends invariant causal prediction (Peters et al., 2016, <doi:10.1111/rssb.12167>) to generalized linear and transformation models (Hothorn et al., 2018, <doi:10.1111/sjos.12291>). The methodology is described in Kook et al. (2023, <doi:10.1080/01621459.2024.2395588>).
NanoString nCounter is a medium-throughput platform that measures gene or microRNA expression levels. Here is a publication that introduces this platform: Malkov (2009) <doi:10.1186/1756-0500-2-80>. Here is the webpage of NanoString nCounter where you can find detailed information about this platform <https://www.nanostring.com/scientific-content/technology-overview/ncounter-technology>. It has great clinical application, such as diagnosis and prognosis of cancer. Implements integrated system of random-coefficient hierarchical regression model to normalize data from NanoString nCounter platform so that noise from various sources can be removed.
This package is a computational tool box for radio-genomic analysis which integrates radio-response data, radio-biological modelling and comprehensive cell line annotations for hundreds of cancer cell lines. The RadioSet class enables creation and manipulation of standardized datasets including information about cancer cells lines, radio-response assays and dose-response indicators. Included methods allow fitting and plotting dose-response data using established radio-biological models along with quality control to validate results. Additional functions related to fitting and plotting dose response curves, quantifying statistical correlation and calculating AUC or SF are included.
The project is intended to support the use of sequins(synthetic sequencing spike-in controls) owned and made available by the Garvan Institute of Medical Research. The goal is to provide a standard library for quantitative analysis, modelling, and visualization of spike-in controls.
VoltRon is a novel spatial omic analysis toolbox for multi-omics integration using spatial image registration. VoltRon is capable of analyzing multiple types and modalities of spatially-aware datasets. VoltRon visualizes and analyzes regions of interests (ROIs), spots, cells and even molecules.
This package provides a set of simple functions that transforms longitudinal data to estimate the cosinor linear model as described in Tong (1976). Methods are given to summarize the mean, amplitude and acrophase, to predict the mean annual outcome value, and to test the coefficients.
This package provides functions to compare a model object to a comparison object. If the objects are not identical, the functions can be instructed to explore various modifications of the objects (e.g., sorting rows, dropping names) to see if the modified versions are identical.
This package contains three main functions including stddiff.numeric(), stddiff.binary() and stddiff.category(). These are used to calculate the standardized difference between two groups. It is especially used to evaluate the balance between two groups before and after propensity score matching.