Fits generalized additive models for the location, scale and shape parameters of a generalized extreme value response distribution. The methodology is based on Rigby, R.A. and Stasinopoulos, D.M. (2005), <doi:10.1111/j.1467-9876.2005.00510.x> and implemented using functions from the gamlss package <doi:10.32614/CRAN.package.gamlss>.
This package contains many functions useful for monitoring and reporting the results of clinical trials and other experiments in which treatments are compared. LaTeX
is used to typeset the resulting reports, recommended to be in the context of knitr'. The Hmisc', ggplot2', and lattice packages are used by greport for high-level graphics.
Holistic generalized linear models (HGLMs) extend generalized linear models (GLMs) by enabling the possibility to add further constraints to the model. The holiglm package simplifies estimating HGLMs using convex optimization. Additional information about the package can be found in the reference manual, the README and the accompanying paper <doi:10.18637/jss.v108.i07>.
We provide a stage-wise selection method using genetic algorithms, designed to efficiently identify main and two-way interactions within high-dimensional linear regression models. Additionally, it implements simulated annealing algorithm during the mutation process. The relevant paper can be found at: Ye, C.,and Yang,Y. (2019) <doi:10.1109/TIT.2019.2913417>.
Synthesize images into characteristic features for time-series analysis or machine learning applications. The package was originally intended for monitoring volcanic eruptions in video data by highlighting and extracting regions above the vent associated with plume activity. However, the functions within are general and have wide applications for image processing, analyzing, filtering, and plotting.
Some functions for performing ICA, MICA, Group ICA, and Multilinear ICA are implemented. ICA, MICA/Group ICA, and Multilinear ICA extract statistically independent components from single matrix, multiple matrices, and single tensor, respectively. For the details of these methods, see the reference section of GitHub
README.md <https://github.com/rikenbit/iTensor>
.
Linear ridge regression coefficient's estimation and testing with different ridge related measures such as MSE, R-squared etc. REFERENCES i. Hoerl and Kennard (1970) <doi:10.1080/00401706.1970.10488634>, ii. Halawa and El-Bassiouni (2000) <doi:10.1080/00949650008812006>, iii. Imdadullah, Aslam, and Saima (2017), iv. Marquardt (1970) <doi:10.2307/1267205>.
This package contains a collection of datasets for working with machine learning tasks. It will contain datasets for supervised machine learning Jiang (2020)<doi:10.1016/j.beth.2020.05.002> and will include datasets for classification and regression. The aim of this package is to use data generated around health and other domains.
R Client for the Microsoft Cognitive Services Text-to-Speech REST API, including voice synthesis. A valid account must be registered at the Microsoft Cognitive Services website <https://azure.microsoft.com/en-us/products/ai-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.
Facilitates tidy calculation of popular quantitative marketing metrics. It also includes functions for doing analysis that will help marketers and data analysts better understand the drivers and/or trends of these metrics. These metrics include Customer Experience Index <https://go.forrester.com/analytics/cx-index/> and Net Promoter Score <https://www.netpromoter.com/know/>.
This package implements methods to fit a parametric Bayesian multi-state model to tumor response data. The model can be used to sample from the predictive distribution to impute missing data and calculate probability of success for custom decision criteria in early clinical trials during an ongoing trial. The inference is implemented using stan'.
Calculate seat apportionment for legislative bodies with various methods. The algorithms include divisor or highest averages methods (e.g. Jefferson, Webster or Adams), largest remainder methods and biproportional apportionment. Gaffke, N. & Pukelsheim, F. (2008) <doi:10.1016/j.mathsocsci.2008.01.004> Oelbermann, K. F. (2016) <doi:10.1016/j.mathsocsci.2016.02.003>.
Survey to collect data about the social and economic conditions of Indonesian society. This activity aims to include: As a data source for planning and evaluating national, sectoral development programs, and providing indicators for Sustainable Development Goals (TPB), National Medium Term Development Plan (RPJMN), and Nawacita, GDP/GRDP and annual Integrated Institutional Balance Sheet.
This package provides a tidy workflow for generating, estimating, reporting, and plotting structural equation models using lavaan', OpenMx
', or Mplus'. Throughout this workflow, elements of syntax, results, and graphs are represented as tidy data, making them easy to customize. Includes functionality to estimate latent class analyses, and to plot dagitty and igraph objects.
Implementation of Time to Target plot based on the work of Ribeiro and Rosseti (2015) <DOI:10.1007/s11590-014-0760-8>, that describe a numerical method that gives the probability of an algorithm A finds a solution at least as good as a given target value in smaller computation time than algorithm B.
Construct and plot objective hierarchies and associated value and utility functions. Evaluate the values and utilities and visualize the results as colored objective hierarchies or tables. Visualize uncertainty by plotting median and quantile intervals within the nodes of objective hierarchies. Get numerical results of the evaluations in standard R data types for further processing.
The genome is divided into non-overlapping fixed-sized bins, number of sequence reads in each counted, adjusted with a simultaneous two-dimensional loess correction for sequence mappability and GC content, and filtered to remove spurious regions in the genome. Downstream steps of segmentation and calling are also implemented via packages DNAcopy and CGHcall, respectively.
This package implements a general framework for finite mixtures of regression models using the EM algorithm. FlexMix provides the E-step and all data handling, while the M-step can be supplied by the user to easily define new models. Existing drivers implement mixtures of standard linear models, generalized linear models and model-based clustering.
This package contains various routines for drawing ellipses and ellipse-like confidence regions, implementing the plots described in Murdoch and Chow (1996), A graphical display of large correlation matrices, The American Statistician 50, 178-180. There are also routines implementing the profile plots described in Bates and Watts (1988), Nonlinear Regression Analysis and its Applications.
This package provides a regular expression toolkit for regex-base
with compile-time checking of regular expression syntax, data types for matches and captures, a text replacement toolkit, portable options, high-level AWK-like tools for building text processing apps, regular expression macros with parsers and test bench, comprehensive documentation, tutorials and copious examples.
The 6581 SID chip is the sound chip used in the Commodore 64 computer. reMID is a MIDI implementation of the 6581 SID chip using the reSID library to provide a virtual SID-based synthesizer, controllable in real-time via MIDI. It includes support for scripted instruments that allow complex sonic control of the chip.
Processes standard recommendation datasets (e.g., a user-item rating matrix) as input and generates rating predictions and lists of recommended items. Standard algorithm implementations which are included in this package are the following: Global/Item/User-Average baselines, Weighted Slope One, Item-Based KNN, User-Based KNN, FunkSVD
, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology (Shani, et al. (2011) <doi:10.1007/978-0-387-85820-3_8>) for recommender systems using measures such as MAE, RMSE, Precision, Recall, F1, AUC, NDCG, RankScore
and coverage measures. The package (Coba, et al.(2017) <doi: 10.1007/978-3-319-60042-0_36>) is intended for rapid prototyping of recommendation algorithms and education purposes.
Estimation of large Vector AutoRegressive
(VAR), Vector AutoRegressive
with Exogenous Variables X (VARX) and Vector AutoRegressive
Moving Average (VARMA) Models with Structured Lasso Penalties, see Nicholson, Wilms, Bien and Matteson (2020) <https://jmlr.org/papers/v21/19-777.html> and Wilms, Basu, Bien and Matteson (2021) <doi:10.1080/01621459.2021.1942013>.
Boosting Regression Quantiles is a component-wise boosting algorithm, that embeds all boosting steps in the well-established framework of quantile regression. It is initialized with the corresponding quantile, uses a quantile-specific learning rate, and uses quantile regression as its base learner. The package implements this algorithm and allows cross-validation and stability selection.