Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This plugin adds a scrolling layout to the likes of PaperWM and similar to Hyprland.
A tiny qt6/qml application to display information about the running system, or copy diagnostics data, without the terminal.
Allows you to add title bars to windows, and lets you set the color, font, size, and more.
This neat, useless plugin adds trails behind windows. It even lets you change the colors.
A clone of xwinwrap for Hyprland. This lets you use any program as your desktop background.
A complete rewrite of split-monitor-workspaces that attempts to fix the issues I experienced with it.
Originally meant for csgo / cs2, but can work with any app, really.
csgo-vulkan-fix is a way to force apps to a fake resolution without them realizing it.
If you want to play CS2, you're locked to your native res. Other resolutions (especially not 16:9) are wonky.
With this plugin, you aren't anymore.
This is the VM used by Pharo.
Deploy your testing VM in a couple of seconds.
This package provides a function to calculate multiple performance metrics for actual and predicted values. In total eight metrics will be calculated for particular actual and predicted series. Helps to describe a Statistical model's performance in predicting a data. Also helps to compare various models performance. The metrics are Root Mean Squared Error (RMSE), Relative Root Mean Squared Error (RRMSE), Mean absolute Error (MAE), Mean absolute percentage error (MAPE), Mean Absolute Scaled Error (MASE), Nash-Sutcliffe Efficiency (NSE), Willmottâ s Index (WI), and Legates and McCabe Index (LME). Among them, first five are expected to be lesser whereas, the last three are greater the better. More details can be found from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202> and Garai et al. (2024) <doi:10.1007/s11063-024-11552-w>.
This package implements several exact methods for allocating optimal sample sizes when designing stratified samples. These methods are discussed in Wright (2012) <doi:10.1080/00031305.2012.733679> and Wright (2017) <doi:10.1016/j.spl.2017.04.026>.
Fast and automatic gradient tree boosting designed to avoid manual tuning and cross-validation by utilizing an information theoretic approach. This makes the algorithm adaptive to the dataset at hand; it is completely automatic, and with minimal worries of overfitting. Consequently, the speed-ups relative to state-of-the-art implementations can be in the thousands while mathematical and technical knowledge required on the user are minimized.
The at-Risk (aR) approach is based on a two-step parametric estimation procedure that allows to forecast the full conditional distribution of an economic variable at a given horizon, as a function of a set of factors. These density forecasts are then be used to produce coherent forecasts for any downside risk measure, e.g., value-at-risk, expected shortfall, downside entropy. Initially introduced by Adrian et al. (2019) <doi:10.1257/aer.20161923> to reveal the vulnerability of economic growth to financial conditions, the aR approach is currently extensively used by international financial institutions to provide Value-at-Risk (VaR) type forecasts for GDP growth (Growth-at-Risk) or inflation (Inflation-at-Risk). This package provides methods for estimating these models. Datasets for the US and the Eurozone are available to allow testing of the Adrian et al. (2019) model. This package constitutes a useful toolbox (data and functions) for private practitioners, scholars as well as policymakers.
This package provides tools for downloading and extracting data from the Copernicus "Agrometeorological indicators from 1979 to present derived from reanalysis" <https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=overview> (AgERA5).
Anscombe's quartet are a set of four two-variable datasets that have several common summary statistics but which have very different joint distributions. This becomes apparent when the data are plotted, which illustrates the importance of using graphical displays in Statistics. This package enables the creation of datasets that have identical marginal sample means and sample variances, sample correlation, least squares regression coefficients and coefficient of determination. The user supplies an initial dataset, which is shifted, scaled and rotated in order to achieve target summary statistics. The general shape of the initial dataset is retained. The target statistics can be supplied directly or calculated based on a user-supplied dataset. The datasauRus package <https://cran.r-project.org/package=datasauRus> provides further examples of datasets that have markedly different scatter plots but share many sample summary statistics.
Statistical procedures to perform stability analysis in plant breeding and to identify stable genotypes under diverse environments. It is possible to calculate coefficient of homeostaticity by Khangildin et al. (1979), variance of specific adaptive ability by Kilchevsky&Khotyleva (1989), weighted homeostaticity index by Martynov (1990), steadiness of stability index by Udachin (1990), superiority measure by Lin&Binn (1988) <doi:10.4141/cjps88-018>, regression on environmental index by Erberhart&Rassel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, Tai's (1971) stability parameters <doi:10.2135/cropsci1971.0011183X001100020006x>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, ecovalence by Wricke (1962), nonparametric stability parameters by Nassar&Huehn (1987) <doi:10.2307/2531947>, Francis&Kannenberg's parameters of stability (1978) <doi:10.4141/cjps78-157>.
Gives some hypothesis test functions (sign test, median and other quantile tests, Wilcoxon signed rank test, coefficient of variation test, test of normal variance, test on weighted sums of Poisson [see Fay and Kim <doi:10.1002/bimj.201600111>], sample size for t-tests with different variances and non-equal n per arm, Behrens-Fisher test, nonparametric ABC intervals, Wilcoxon-Mann-Whitney test [with effect estimates and confidence intervals, see Fay and Malinovsky <doi:10.1002/sim.7890>], two-sample melding tests [see Fay, Proschan, and Brittain <doi:10.1111/biom.12231>], one-way ANOVA allowing var.equal=FALSE [see Brown and Forsythe, 1974, Biometrics]), prevalence confidence intervals that adjust for sensitivity and specificity [see Lang and Reiczigel, 2014 <doi:10.1016/j.prevetmed.2013.09.015>] or Bayer, Fay, and Graubard, 2023 <doi:10.48550/arXiv.2205.13494>). The focus is on hypothesis tests that have compatible confidence intervals, but some functions only have confidence intervals (e.g., prevSeSp).
Schema definitions and read, write and validation tools for data formatted in accordance with the AIRR Data Representation schemas defined by the AIRR Community <http://docs.airr-community.org>.
Estimate the Å estákâ Berggren kinetic model (degradation model) from experimental data. A closed-form (analytic) solution to the degradation model is implemented as a non-linear fit, allowing for the extrapolation of the degradation of a drug product - both in time and temperature. Parametric bootstrap, with kinetic parameters drawn from the multivariate t-distribution, and analytical formulae (the delta method) are available options to calculate the confidence and prediction intervals. The results (modelling, extrapolations and statistical intervals) can be visualised with multiple plots. The examples illustrate the accelerated stability modelling in drugs and vaccines development.
This package provides a simple client package for the Amazon Web Services ('AWS') Lambda API <https://aws.amazon.com/lambda/>.
Allows the user to implement an address search auto completion menu on shiny text inputs. This is done using the Algolia Places JavaScript library. See <https://community.algolia.com/places/>.
This package provides a lightweight, dependency-free toolbox for pre-processing XY data from experimental methods (i.e. any signal that can be measured along a continuous variable). This package provides methods for baseline estimation and correction, smoothing, normalization, integration and peaks detection. Baseline correction methods includes polynomial fitting as described in Lieber and Mahadevan-Jansen (2003) <doi:10.1366/000370203322554518>, Rolling Ball algorithm after Kneen and Annegarn (1996) <doi:10.1016/0168-583X(95)00908-6>, SNIP algorithm after Ryan et al. (1988) <doi:10.1016/0168-583X(88)90063-8>, 4S Peak Filling after Liland (2015) <doi:10.1016/j.mex.2015.02.009> and more.
EM algorithm for estimation of parameters and other methods in a quantile regression.