This package provides an implementation of cumulative link (mixed) models also known as ordered regression models, proportional odds models, proportional hazards models for grouped survival times and ordered models. Estimation is via maximum likelihood and mixed models are fitted with the Laplace approximation and adaptive Gauss-Hermite quadrature.
This package provides a generic object traverser for Ruby. It takes the object and recursively yields:
the given object
instance variables, class variables, constants
Hash keys and values
Enumerable members
Struct members
Data members
Range begins and ends
dStruct identifies differentially reactive regions from RNA structurome profiling data. dStruct is compatible with a broad range of structurome profiling technologies, e.g., SHAPE-MaP, DMS-MaPseq, Structure-Seq, SHAPE-Seq, etc. See Choudhary et al., Genome Biology, 2019 for the underlying method.
EpiTxDb facilitates the storage of epitranscriptomic information. More specifically, it can keep track of modification identity, position, the enzyme for introducing it on the RNA, a specifier which determines the position on the RNA to be modified and the literature references each modification is associated with.
To classify Helicobacter pylori genomes according to genetic distance from nine reference populations. The nine reference populations are hpgpAfrica, hpgpAfrica-distant, hpgpAfroamerica, hpgpEuroamerica, hpgpMediterranea, hpgpEurope, hpgpEurasia, hpgpAsia, and hpgpAklavik86-like. The vertex populations are Africa, Europe and Asia.
This package implements the spatially aware library size normalisation algorithm, SpaNorm. SpaNorm normalises out library size effects while retaining biology through the modelling of smooth functions for each effect. Normalisation is performed in a gene- and cell-/spot- specific manner, yielding library size adjusted data.
Implementation of adaptive p-value thresholding (AdaPT), including both a framework that allows the user to specify any algorithm to learn local false discovery rate and a pool of convenient functions that implement specific algorithms. See Lei, Lihua and Fithian, William (2016) <arXiv:1609.06035>.
The Aquo Standard is the Dutch Standard for the exchange of data in water management. With *aquodom* (short for aquo domaintables) it is easy to exploit the API (<https://www.aquo.nl/index.php/Hoofdpagina>) to download domaintables of the Aquo Standard and use them in R.
This package provides a Bayesian smoothing method for post-processing of remote sensing image classification which refines the labelling in a classified image in order to enhance its classification accuracy. Combines pixel-based classification methods with a spatial post-processing method to remove outliers and misclassified pixels.
This package provides a set of functions to implement the Combined Compromise Solution (CoCoSo) Method created by Yazdani, Zarate, Zavadskas and Turskis (2019) <doi:10.1108/MD-05-2017-0458>. This method is based on an integrated simple additive weighting and compromise exponentially weighted product model.
Price credit default swaps using C code from the International Swaps and Derivatives Association CDS Standard Model. See <https://www.cdsmodel.com/cdsmodel/documentation.html> for more information about the model and <https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html> for license details for the C code.
This package implements algorithms for analyzing Cayley graphs of permutation groups, with a focus on the TopSpin puzzle and similar permutation-based combinatorial puzzles. Provides methods for cycle detection, state space exploration, and finding optimal operation sequences in permutation groups generated by shift and reverse operations.
This package provides a comprehensive toolkit for political linguistics featuring a museum of famous digital gaffes, phonetic transformation algorithms (Soundex, consonant shifts), QWERTY keyboard geometry for typo simulation, syllable parsing, word blending (portmanteau creation), and text corruption analysis. Originally inspired by the infamous "covfefe" tweet of 2017.
This package provides a flexible, extendable representation of an ecological community and a range of functions for analysis and visualisation, focusing on food web, body mass and numerical abundance data. Allows inter-web comparisons such as examining changes in community structure over environmental, temporal or spatial gradients.
It provides the subset operator for dist objects and a function to compute medoid(s) that are fully parallelized leveraging the RcppParallel package. It also provides functions for package developers to easily implement their own parallelized dist() function using a custom C++'-based distance function.
Designed for network analysis, leveraging the personalized PageRank algorithm to calculate node scores in a given graph. This innovative approach allows users to uncover the importance of nodes based on a customized perspective, making it particularly useful in fields like bioinformatics, social network analysis, and more.
Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-function regression models, are fitted by a component-wise gradient boosting algorithm. For a manual on how to use FDboost', see Brockhaus, Ruegamer, Greven (2017) <doi:10.18637/jss.v094.i10>.
This package provides color palettes designed to be reminiscent of text on paper. The color schemes were taken from <https://stephango.com/flexoki>. Includes discrete, continuous, and binned scales that are not necessarily color-blind friendly. Simple scale and theme functions are available for use with ggplot2'.
Write SARIMA models in (finite) AR representation and simulate generalized multiplicative seasonal autoregressive moving average (time) series with Normal / Gaussian, Poisson or negative binomial distribution. The methodology of this method is described in Briet OJT, Amerasinghe PH, and Vounatsou P (2013) <doi:10.1371/journal.pone.0065761>.
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.
Calibration and risk-set calibration methods for fitting Cox proportional hazard model when a binary covariate is measured intermittently. Methods include functions to fit calibration models from interval-censored data and modified partial likelihood for the proportional hazard model, Nevo et al. (2018+) <arXiv:1801.01529>.
Uses data and researcher's beliefs on measurement error and instrumental variable (IV) endogeneity to generate the space of consistent beliefs across measurement error, instrument endogeneity, and instrumental relevance for IV regressions. Package based on DiTraglia and Garcia-Jimeno (2020) <doi:10.1080/07350015.2020.1753528>.
This package provides methods for selecting the optimal bandwidth in kernel density estimation for dependent samples, such as those generated by Markov chain Monte Carlo (MCMC). Implements a modified biased cross-validation (mBCV) approach that accounts for sample dependence, improving the accuracy of estimated density functions.
This package provides a classification tree method that uses Uncorrelated Linear Discriminant Analysis (ULDA) for variable selection, split determination, and model fitting in terminal nodes. It automatically handles missing values and offers visualization tools. For more details, see Wang (2024) <doi:10.48550/arXiv.2410.23147>.