Fast estimation algorithms to implement the Quantile Regression with Selection estimator and the multiplicative Bootstrap for inference. This estimator can be used to estimate models that feature sample selection and heterogeneous effects in cross-sectional data. For more details, see Arellano and Bonhomme (2017) <doi:10.3982/ECTA14030> and Pereda-Fernández (2024) <doi:10.48550/arXiv.2402.16693>
.
This package performs analysis of variance testing procedures for univariate and multivariate functional data (Cuesta-Albertos and Febrero-Bande (2010) <doi:10.1007/s11749-010-0185-3>, Gorecki and Smaga (2015) <doi:10.1007/s00180-015-0555-0>, Gorecki and Smaga (2017) <doi:10.1080/02664763.2016.1247791>, Zhang et al. (2018) <doi:10.1016/j.csda.2018.05.004>).
Creation of an input model (fitted distribution) via the frequentist model averaging (FMA) approach and generate random-variates from the distribution specified by "myfit" which is the fitted input model via the FMA approach. See W. X. Jiang and B. L. Nelson (2018), "Better Input Modeling via Model Averaging," Proceedings of the 2018 Winter Simulation Conference, IEEE Press, 1575-1586.
Implementation of dynamic principal component analysis (DPCA), simulation of VAR and VMA processes and frequency domain tools. These frequency domain methods for dimensionality reduction of multivariate time series were introduced by David Brillinger in his book Time Series (1974). We follow implementation guidelines as described in Hormann, Kidzinski and Hallin (2016), Dynamic Functional Principal Component <doi:10.1111/rssb.12076>.
Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package implemented a granularity-based dimension-agnostic tool for the identification of spatially variable genes. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
Simulating species migration and range dynamics under stable or changing environmental conditions based on a simple, raster-based, deterministic or stochastic migration model. Kissmig runs on binary or quantitative suitability maps, which are pre-calculated with niche-based habitat suitability models (also called ecological niche models (ENMs) or species distribution models (SDMs)). Nobis & Normand (2014), <doi:10.1111/ecog.00930>.
This package provides a Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization algorithm. MADGRAD is a best-of-both-worlds optimizer with the generalization performance of stochastic gradient descent and at least as fast convergence as that of Adam, often faster. A drop-in optim_madgrad()
implementation is provided based on Defazio et al (2020) <arxiv:2101.11075>.
Bland (2009) <doi:10.1136/bmj.b3985> recommended to base study sizes on the width of the confidence interval rather the power of a statistical test. The goal of presize is to provide functions for such precision based sample size calculations. For a given sample size, the functions will return the precision (width of the confidence interval), and vice versa.
Computes the Owen's T function or the bivariate normal integral using one of the following: modified Euler's arctangent series, tetrachoric series, or Vasicek's series. For the methods, see Komelj, J. (2023) <doi:10.4236/ajcm.2023.134026> (or reprint <arXiv:2312.00011>
with better typography) and Vasicek, O. A. (1998) <doi:10.21314/JCF.1998.015>.
Reference data sets of species sensitivities to compare the results of fitting species sensitivity distributions using software such as ssdtools and Burrlioz'. It consists of 17 primary data sets from four different Australian and Canadian organizations as well as five datasets from anonymous sources. It also includes a data set of the results of fitting various distributions using different software.
Collection of model estimation, and model plotting functions related to the STEPCAM family of community assembly models. STEPCAM is a STEPwise Community Assembly Model that infers the relative contribution of Dispersal Assembly, Habitat Filtering and Limiting Similarity from a dataset consisting of the combination of trait and abundance data. See also <doi:10.1890/14-0454.1> for more information.
This groundbreaking technical indicator directly integrates volatility into price averaging by weighting median range-bound prices using the True Range. Unlike conventional metrics such as TWAP (Time-Weighted Average Price), which focuses solely on time, or VWAP (Volume-Weighted Average Price), which emphasizes volume, TrueWAP
captures fluctuating market behavior by reflecting true price movement within high/low performance boundaries.
Mixed effects modeling with warping for functional data using B- spline. Warping coefficients are considered as random effects, and warping functions are general functions, parameters representing the projection onto B- spline basis of a part of the warping functions. Warped data are modelled by a linear mixed effect functional model, the noise is Gaussian and independent from the warping functions.
The affyPLM provides a package that extends and improves the functionality of the base affy package. For speeding up the runs, it includes routines that make heavy use of compiled code. The central focus is on implementation of methods for fitting probe-level models and tools using these models. PLM based quality assessment tools are also provided.
This package provides estimators for multinomial logit models in their conditional logit and baseline logit variants, with or without random effects, with or without overdispersion. Random effects models are estimated using the PQL technique (based on a Laplace approximation) or the MQL technique (based on a Solomon-Cox approximation). Estimates should be treated with caution if the group sizes are small.
Ggplot2 is an implementation of the grammar of graphics in R. It combines the advantages of both base and lattice graphics: conditioning and shared axes are handled automatically, and you can still build up a plot step by step from multiple data sources. It also implements a sophisticated multidimensional conditioning system and a consistent interface to map data to aesthetic attributes.
This package provides the Molecular Signatures Database (MSigDB) gene sets typically used with the Gene Set Enrichment Analysis (GSEA) software in a standard R data frame with key-value pairs. Included are the original human gene symbols and Entrez IDs as well as the equivalents for various frequently studied model organisms such as mouse, rat, pig, fly, and yeast.
RadeonTop monitors resource consumption on supported AMD Radeon Graphics Processing Units (GPUs), either in real time as bar graphs on a terminal or saved to a file for further processing. It measures both the activity of the GPU as a whole, which is also accurate during OpenCL computations, as well as separate component statistics that are only meaningful under OpenGL graphics workloads.
This package provides a collection of algorithms and functions to aid statistical modeling. It includes growth curve comparisons, limiting dilution analysis (aka ELDA), mixed linear models, heteroscedastic regression, inverse-Gaussian probability calculations, Gauss quadrature and a secure convergence algorithm for nonlinear models. It also includes advanced generalized linear model functions that implement secure convergence, dispersion modeling and Tweedie power-law families.
Network Security Services (NSS) is a set of libraries designed to support cross-platform development of security-enabled client and server applications. Applications built with NSS can support SSL v2 and v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509 v3 certificates, and other security standards.
This package tracks the Rapid Release channel, which updates frequently.
Generation of natural looking noise has many application within simulation, procedural generation, and art, to name a few. The ambient package provides an interface to the FastNoise
C++ library and allows for efficient generation of perlin, simplex, worley, cubic, value, and white noise with optional perturbation in either 2, 3, or 4 (in case of simplex and white noise) dimensions.
This package performs requests to the Arctos API to download data. Provides a set of builder classes for performing complex requests, as well as a set of simple functions for automating many common requests and workflows. More information about Arctos can be found in Cicero et al. (2024) <doi:10.1371/journal.pone.0296478> or on their website <https://arctosdb.org/>.
Power and associated functions useful in prospective planning and monitoring of a clinical trial when a recurrent event endpoint is to be assessed by the robust Andersen-Gill model, see Lin, Wei, Yang, and Ying (2010) <doi:10.1111/1467-9868.00259>. The equations developed in Ingel and Jahn-Eimermacher (2014) <doi:10.1002/bimj.201300090> and their consequences are employed.
Bell regression models for count data with overdispersion. The implemented models account for ordinary and zero-inflated regression models under both frequentist and Bayesian approaches. Theoretical details regarding the models implemented in the package can be found in Castellares et al. (2018) <doi:10.1016/j.apm.2017.12.014> and Lemonte et al. (2020) <doi:10.1080/02664763.2019.1636940>.