This package provides a set of Boolean operators which accept integers of any size, in any base from 2 to 36, including 2's complement format, and perform actions like "AND," "OR", "NOT", "SHIFTR/L" etc. The output can be in any base specified. A direct base to base converter is included.
Streamlines common steps for working with animal tracking data, from raw telemetry points to summaries, interactive maps, and home range estimates. Designed to be beginner-friendly, it enables rapid exploration of spatial and movement data with minimal wrangling, providing a unified workflow for importing, summarizing, and visualizing, and analyzing animal movement datasets.
Runs a series of configurable tests against a user's compute environment. This can be used for checking that things like a specific directory or an environment variable is available before you start an analysis. Alternatively, you can use the package's situation report when filing error reports with your compute infrastructure.
Download Data from the FAOSTAT Database of the Food and Agricultural Organization (FAO) of the United Nations. A list of functions to download statistics from FAOSTAT (database of the FAO <https://www.fao.org/faostat/>) and WDI (database of the World Bank <https://data.worldbank.org/>), and to perform some harmonization operations.
This package provides functions for estimating a GARCHSK model and GJRSK model based on a publication by Leon et,al (2005)<doi:10.1016/j.qref.2004.12.020> and Nakagawa and Uchiyama (2020)<doi:10.3390/math8111990>. These are a GARCH-type model allowing for time-varying volatility, skewness and kurtosis.
We implement two main functions. The first function uses a given grouped and/or right-censored grouping scheme and empirical data to infer parameters, and implements chi-square goodness-of-fit tests. The second function searches for the global optimal grouping scheme of grouped and/or right-censored count responses in surveys.
This package provides a multi-platform user interface for drawing highly customizable graphs in R. It aims to be a valuable help to quickly draw publishable graphs without any knowledge of R commands. Six kinds of graph are available: histogram, box-and-whisker plot, bar plot, pie chart, curve and scatter plot.
"Lessons in Statistical Thinking" D.T. Kaplan (2014) <https://dtkaplan.github.io/Lessons-in-statistical-thinking/> is a textbook for a first or second course in statistics that embraces data wrangling, causal reasoning, modeling, statistical adjustment, and simulation. LSTbook supports the student-centered, tidy, pipeline-oriented computing style featured in the book.
This package provides a collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the OpenMx and lavaan packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices, see Cheung (2015) <doi:10.3389/fpsyg.2014.01521>.
Measure quality of your tests. muttest introduces small changes (mutations) to your code and runs your tests to check if they catch the changes. If they do, your tests are good. If not, your assertions are not specific enough. muttest gives you percent score of how often your tests catch the changes.
This package provides a collection of functions to download and process weather data from the Oklahoma Mesonet <https://mesonet.org>. Functions are available for downloading station metadata, downloading Mesonet time series (MTS) files, importing MTS files into R, and converting soil temperature change measurements into soil matric potential and volumetric soil moisture.
Near-far matching is a study design technique for preprocessing observational data to mimic a pair-randomized trial. Individuals are matched to be near on measured confounders and far on levels of an instrumental variable. Methods outlined in further detail in Rigdon, Baiocchi, and Basu (2018) <doi:10.18637/jss.v086.c05>.
Trains per-horizon probabilistic ensembles from a univariate time series. It supports rpart', glmnet', and kNN engines with flexible residual distributions and heteroscedastic scale models, weighting variants by calibration-aware scores. A Gaussian/t copula couples the marginals to simulate joint forecast paths, returning quantiles, means, and step increments across horizons.
Two-sample power-enhanced mean tests, covariance tests, and simultaneous tests on mean vectors and covariance matrices for high-dimensional data. Methods of these PE tests are presented in Yu, Li, and Xue (2022) <doi:10.1080/01621459.2022.2126781>; Yu, Li, Xue, and Li (2022) <doi:10.1080/01621459.2022.2061354>.
This package provides a collection of software provides R support for ADMB (Automatic Differentiation Model Builder) and a GUI interface facilitates the conversion of ADMB template code to C code followed by compilation to a binary executable. Stand-alone functions can also be run by users not interested in clicking a GUI'.
Efficient algorithm for solving PU (Positive and Unlabeled) problem in low or high dimensional setting with lasso or group lasso penalty. The algorithm uses Maximization-Minorization and (block) coordinate descent. Sparse calculation and parallel computing are supported for the computational speed-up. See Hyebin Song, Garvesh Raskutti (2018) <arXiv:1711.08129>.
Detects spatial and temporal groups in GPS relocations (Robitaille et al. (2019) <doi:10.1111/2041-210X.13215>). It can be used to convert GPS relocations to gambit-of-the-group format to build proximity-based social networks In addition, the randomizations function provides data-stream randomization methods suitable for GPS data.
This package provides a collection of Radix Tree and Trie algorithms for finding similar sequences and calculating sequence distances (Levenshtein and other distance metrics). This work was inspired by a trie implementation in Python: "Fast and Easy Levenshtein distance using a Trie." Hanov (2011) <https://stevehanov.ca/blog/index.php?id=114>.
This package provides a pipeline for estimating the stellar age, mass, and radius given observational effective temperature, [Fe/H], and astroseismic parameters. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models, as described in Valle et al. (2014) <doi:10.1051/0004-6361/201322210>.
This package implements the SPCAvRP algorithm, developed and analysed in "Sparse principal component analysis via random projections" Gataric, M., Wang, T. and Samworth, R. J. (2018) <arXiv:1712.05630>. The algorithm is based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix.
Goodness of Fit and Forecast Evaluation Tests for timeseries models. Includes, among others, the Generalized Method of Moments (GMM) Orthogonality Test of Hansen (1982), the Nyblom (1989) parameter constancy test, the sign-bias test of Engle and Ng (1993), and a range of tests for value at risk and expected shortfall evaluation.
Detects values imported from spreadsheets that were auto-converted to Excel date serials and reconstructs the originally intended day.month decimals (for example, 30.3 that Excel displayed as 30/03/2025'). The functions work in a vectorized manner, preserve non-serial values, and support both the 1900 and 1904 date systems.
Recursive partitioning for varying coefficient generalized linear models and ordinal linear mixed models. Special features are coefficient-wise partitioning, non-varying coefficients and partitioning of time-varying variables in longitudinal regression. A description of a part of this package was published by Burgin and Ritschard (2017) <doi:10.18637/jss.v080.i06>.
This package provides a single key function, Require that makes rerun-tolerant versions of install.packages and `require` for CRAN packages, packages no longer on CRAN (i.e., archived), specific versions of packages, and GitHub packages. This approach is developed to create reproducible workflows that are flexible and fast enough to use while in development stages, while able to build snapshots once a stable package collection is found. As with other functions in a reproducible workflow, this package emphasizes functions that return the same result whether it is the first or subsequent times running the function, with subsequent times being sufficiently fast that they can be run every time without undue waiting burden on the user or developer.