doubletrouble aims to identify duplicated genes from whole-genome protein sequences and classify them based on their modes of duplication. The duplication modes are i. segmental duplication (SD); ii. tandem duplication (TD); iii. proximal duplication (PD); iv. transposed duplication (TRD) and; v. dispersed duplication (DD). Transposon-derived duplicates (TRD) can be further subdivided into rTRD
(retrotransposon-derived duplication) and dTRD
(DNA transposon-derived duplication). If users want a simpler classification scheme, duplicates can also be classified into SD- and SSD-derived (small-scale duplication) gene pairs. Besides classifying gene pairs, users can also classify genes, so that each gene is assigned a unique mode of duplication. Users can also calculate substitution rates per substitution site (i.e., Ka and Ks) from duplicate pairs, find peaks in Ks distributions with Gaussian Mixture Models (GMMs), and classify gene pairs into age groups based on Ks peaks.
This is the core package that provides both the user API and developer API to deploy the parallel cluster on the cloud using the container service. The user can call clusterPreset()
to define the cloud service provider and container and makeDockerCluster()
to create the cluster. The developer should see "developer's cookbook" on how to define the cloud provider and container.
This package performs analysis of popular experimental designs used in the field of biological research. The designs covered are completely randomized design, randomized complete block design, factorial completely randomized design, factorial randomized complete block design, split plot design, strip plot design and latin square design. The analysis include analysis of variance, coefficient of determination, normality test of residuals, standard error of mean, standard error of difference and multiple comparison test of means. The package has functions for transformation of data and yield data conversion. Some datasets are also added in order to facilitate examples.
This package builds on Seurat's Doheatmap
function code to produce a heatmap from a Seurat object with multiple annotation bars.
This is an R package that integrates the installation of doublet-detection methods. In addition, this tool is used for execution and benchmark of those eight mentioned methods.
Likelihood-based inference methods with doubly-truncated data are developed under various models. Nonparametric models are based on Efron and Petrosian (1999) <doi:10.1080/01621459.1999.10474187> and Emura, Konno, and Michimae (2015) <doi:10.1007/s10985-014-9297-5>. Parametric models from the special exponential family (SEF) are based on Hu and Emura (2015) <doi:10.1007/s00180-015-0564-z> and Emura, Hu and Konno (2017) <doi:10.1007/s00362-015-0730-y>. The parametric location-scale models are based on Dorre et al. (2021) <doi:10.1007/s00180-020-01027-6>.
Dominance analysis is a method that allows to compare the relative importance of predictors in multiple regression models: ordinary least squares, generalized linear models, hierarchical linear models, beta regression and dynamic linear models. The main principles and methods of dominance analysis are described in Budescu, D. V. (1993) <doi:10.1037/0033-2909.114.3.542> and Azen, R., & Budescu, D. V. (2003) <doi:10.1037/1082-989X.8.2.129> for ordinary least squares regression. Subsequently, the extensions for multivariate regression, logistic regression and hierarchical linear models were described in Azen, R., & Budescu, D. V. (2006) <doi:10.3102/10769986031002157>, Azen, R., & Traxel, N. (2009) <doi:10.3102/1076998609332754> and Luo, W., & Azen, R. (2013) <doi:10.3102/1076998612458319>, respectively.