_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-double-truncation 1.8
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=double.truncation
Licenses: GPL 2
Synopsis: Analysis of Doubly-Truncated Data
Description:

Likelihood-based inference methods with doubly-truncated data are developed under various models. Nonparametric models are based on Efron and Petrosian (1999) <doi:10.1080/01621459.1999.10474187> and Emura, Konno, and Michimae (2015) <doi:10.1007/s10985-014-9297-5>. Parametric models from the special exponential family (SEF) are based on Hu and Emura (2015) <doi:10.1007/s00180-015-0564-z> and Emura, Hu and Konno (2017) <doi:10.1007/s00362-015-0730-y>. The parametric location-scale models are based on Dorre et al. (2021) <doi:10.1007/s00180-020-01027-6>.

r-dominanceanalysis 2.1.0
Propagated dependencies: r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=dominanceanalysis
Licenses: GPL 2
Synopsis: Dominance Analysis
Description:

Dominance analysis is a method that allows to compare the relative importance of predictors in multiple regression models: ordinary least squares, generalized linear models, hierarchical linear models, beta regression and dynamic linear models. The main principles and methods of dominance analysis are described in Budescu, D. V. (1993) <doi:10.1037/0033-2909.114.3.542> and Azen, R., & Budescu, D. V. (2003) <doi:10.1037/1082-989X.8.2.129> for ordinary least squares regression. Subsequently, the extensions for multivariate regression, logistic regression and hierarchical linear models were described in Azen, R., & Budescu, D. V. (2006) <doi:10.3102/10769986031002157>, Azen, R., & Traxel, N. (2009) <doi:10.3102/1076998609332754> and Luo, W., & Azen, R. (2013) <doi:10.3102/1076998612458319>, respectively.

Page: 12345
Total results: 98