Package for combined miRNA
- and mRNA-testing
.
We provide detailed functions for univariate Mixed Tempered Stable distribution.
This package provides functions for estimating structural equation models using instrumental variables.
This package provides tools to perform analyses and combine results from multiple-imputation datasets.
Various reliability analysis methods for rare event inference (computing failure probability and quantile from model/function outputs).
Create tile grid maps, which are like choropleth maps except each region is represented with equal visual space.
Quick and simple Tcl/Tk Graphical User Interface to call functions. Also comprises a very simple experimental GUI framework.
Generic functions to produce area/bar/box/line plots of data following IAMC (Integrated Assessment Modeling Consortium) submission format.
The minimax family of distributions is a two-parameter family like the beta family, but computationally a lot more tractible.
Implementation of parametric and semiparametric mixture cure models based on existing R packages. See details of the models in Peng and Yu (2020) <ISBN: 9780367145576>.
Fit finite mixture distribution models to grouped data and conditional data by maximum likelihood using a combination of a Newton-type algorithm and the EM algorithm.
Wrapper for minepy implementation of Maximal Information-based Nonparametric Exploration statistics (MIC and MINE family). Detailed information of the ANSI C implementation of minepy can be found at <http://minepy.readthedocs.io/en/latest>.
Our approach uses a mixture of multilayer stochastic block models to group co-membership matrices with similar information into components and to partition observations into different clusters. See De Santiago (2023, ISBN: 978-2-87587-088-9).
Data-driven approach for Exploratory Factor Analysis (EFA) that uses Model Implied Instrumental Variables (MIIVs). The method starts with a one factor model and arrives at a suggested model with enhanced interpretability that allows cross-loadings and correlated errors.
Imputation of incomplete continuous or categorical datasets; Missing values are imputed with a principal component analysis (PCA), a multiple correspondence analysis (MCA) model or a multiple factor analysis (MFA) model; Perform multiple imputation with and in PCA or MCA.
Various tools for microeconomic analysis and microeconomic modelling, e.g. estimating quadratic, Cobb-Douglas and Translog functions, calculating partial derivatives and elasticities of these functions, and calculating Hessian matrices, checking curvature and preparing restrictions for imposing monotonicity of Translog functions.
This package provides a collection of functions to perform various meta-analytical models through a unified mixed-effects framework, including standard univariate fixed and random-effects meta-analysis and meta-regression, and non-standard extensions such as multivariate, multilevel, longitudinal, and dose-response models.
Millefy
is a tool for visualizing read coverage of scRNA-seq(single-cell RNA sequencing) datasets in genomic contexts. By dynamically and automatically reorder single cells based on locus-specific pseudo time, Millefy
highlights cell-to-cell heterogeneity in read coverage of scRNA-seq data.
Density, distribution function, ... hazard function, cumulative hazard function, survival function for survival distributions with piece-wise constant hazards and multiple states and methods to plot and summarise those distributions. A derivation of the used algorithms can be found in my masters thesis <doi:10.25365/thesis.76098>.
This is a R implementation of "Minimum SNPs" software as described in "Price E.P., Inman-Bamber, J., Thiruvenkataswamy, V., Huygens, F and Giffard, P.M." (2007) <doi:10.1186/1471-2105-8-278> "Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants.".
This package provides singular value decomposition based estimation algorithms for exploratory item factor analysis (IFA) based on multidimensional item response theory models. For more information, please refer to: Zhang, H., Chen, Y., & Li, X. (2020). A note on exploratory item factor analysis by singular value decomposition. Psychometrika, 1-15, <DOI:10.1007/s11336-020-09704-7>.
Statistical framework for comparing sets of trees using hypothesis testing methods. Designed for transmission trees, phylogenetic trees, and directed acyclic graphs (DAGs), the package implements chi-squared tests to compare edge frequencies between sets and PERMANOVA to analyse topological dissimilarities with customisable distance metrics, following Anderson (2001) <doi:10.1111/j.1442-9993.2001.01070.pp.x>.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
This package provides functions to fit finite mixture of scale mixture of skew-normal (FM-SMSN) distributions, details in Prates, Lachos and Cabral (2013) <doi: 10.18637/jss.v054.i12>, Cabral, Lachos and Prates (2012) <doi:10.1016/j.csda.2011.06.026> and Basso, Lachos, Cabral and Ghosh (2010) <doi:10.1016/j.csda.2009.09.031>.