This package provides easy to use functions to create all-sky grid plots of widely used astronomical coordinate systems (equatorial, ecliptic, galactic) and scatter plots of data on any of these systems including on-the-fly system conversion. It supports any type of spherical projection to the plane defined by the mapproj package.
This program calculates bioclimatic indices and fluxes (radiation, evapotranspiration, soil moisture) for use in studies of ecosystem function, species distribution, and vegetation dynamics under changing climate scenarios. Predictions are based on a minimum of required inputs: latitude, precipitation, air temperature, and cloudiness. Davis et al. (2017) <doi:10.5194/gmd-10-689-2017>.
Fits univariate Bayesian spatial regression models for large datasets using Nearest Neighbor Gaussian Processes (NNGP) detailed in Finley, Datta, Banerjee (2022) <doi:10.18637/jss.v103.i05>, Finley, Datta, Cook, Morton, Andersen, and Banerjee (2019) <doi:10.1080/10618600.2018.1537924>, and Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091>.
This package provides the Fortran code of the R package spam with 64-bit integers. Loading this package together with the R package spam enables the sparse matrix class spam to handle huge sparse matrices with more than 2^31-1 non-zero elements. Documentation is provided in Gerber, Moesinger and Furrer (2017) <doi:10.1016/j.cageo.2016.11.015>.
Shortest paths between points in grids. Optional barriers and custom transition functions. Applications regarding planet Earth, as well as generally spheres and planes. Optimized for computational performance, customizability, and user friendliness. Graph-theoretical implementation tailored to gridded data. Currently focused on Dijkstra's (1959) <doi:10.1007/BF01386390> algorithm. Future updates broaden the scope to other least cost path algorithms and to centrality measures.
Predicts the occurrence times (in day-of-year) of spring phenological events. Three methods, including the accumulated degree days (ADD) method, the accumulated days transferred to a standardized temperature (ADTS) method, and the accumulated developmental progress (ADP) method, were used. See Shi et al. (2017a) <doi:10.1016/j.agrformet.2017.04.001> and Shi et al. (2017b) <doi:10.1093/aesa/sax063> for details.
Semiparametric and parametric estimation of INAR models including a finite sample refinement (Faymonville et al. (2022) <doi:10.1007/s10260-022-00655-0>) for the semiparametric setting introduced in Drost et al. (2009) <doi:10.1111/j.1467-9868.2008.00687.x>, different procedures to bootstrap INAR data (Jentsch, C. and Weià , C.H. (2017) <doi:10.3150/18-BEJ1057>) and flexible simulation of INAR data.
This a package containing diverse spatial datasets for demonstrating, benchmarking and teaching spatial data analysis. It includes R data of class sf
, Spatial
, and nb
. It also contains data stored in a range of file formats including GeoJSON, ESRI Shapefile and GeoPackage. Some of the datasets are designed to illustrate specific analysis techniques. cycle_hire()
and cycle_hire_osm()
, for example, are designed to illustrate point pattern analysis techniques.
This package provides a flexible framework combining variable screening and random projection techniques for fitting ensembles of predictive generalized linear models to high-dimensional data. Designed for extensibility, the package implements key techniques as S3 classes with user-friendly constructors, enabling easy integration and development of new procedures for high-dimensional applications. For more details see Parzer et al (2024a) <doi:10.48550/arXiv.2312.00130>
and Parzer et al (2024b) <doi:10.48550/arXiv.2410.00971>
.
This package provides tools for analyzing spatial cell-cell interactions based on ligand-receptor pairs, including functions for local, regional, and global analysis using spatial transcriptomics data. Integrates with databases like CellChat
<http://www.cellchat.org/>, CellPhoneDB
<https://www.cellphonedb.org/>, Cellinker <https://www.rna-society.org/cellinker/index.html>, ICELLNET <https://github.com/soumelis-lab/ICELLNET>, and ConnectomeDB
<https://humanconnectome.org/software/connectomedb/> to identify ligand-receptor pairs, visualize interactions through heatmaps, chord diagrams, and infer interactions on different spatial scales.
Analysis of species limits and DNA barcoding data. Included are functions for generating important summary statistics from DNA barcode data, assessing specimen identification efficacy, testing and optimizing divergence threshold limits, assessment of diagnostic nucleotides, and calculation of the probability of reciprocal monophyly. Additionally, a sliding window function offers opportunities to analyse information across a gene, often used for marker design in degraded DNA studies. Further information on the package has been published in Brown et al (2012) <doi:10.1111/j.1755-0998.2011.03108.x>.
This package provides a collection of functions for preparing data and fitting Bayesian count spatial regression models, with a specific focus on the Gamma-Count (GC) model. The GC model is well-suited for modeling dispersed count data, including under-dispersed or over-dispersed counts, or counts with equivalent dispersion, using Integrated Nested Laplace Approximations (INLA). The package includes functions for generating data from the GC model, as well as spatially correlated versions of the model. See Nadifar, Baghishani, Fallah (2023) <doi:10.1007/s13253-023-00550-5>.
Computes the effective range of a smoothing matrix, which is a measure of the distance to which smoothing occurs. This is motivated by the application of spatial splines for adjusting for unmeasured spatial confounding in regression models, but the calculation of effective range can be applied to smoothing matrices in other contexts. For algorithmic details, see Rainey and Keller (2024) "spconfShiny
: an R Shiny application..." <doi:10.1371/journal.pone.0311440> and Keller and Szpiro (2020) "Selecting a Scale for Spatial Confounding Adjustment" <doi:10.1111/rssa.12556>.
The Statistical Package for REliability Data Analysis (SPREDA) implements recently-developed statistical methods for the analysis of reliability data. Modern technological developments, such as sensors and smart chips, allow us to dynamically track product/system usage as well as other environmental variables, such as temperature and humidity. We refer to these variables as dynamic covariates. The package contains functions for the analysis of time-to-event data with dynamic covariates and degradation data with dynamic covariates. The package also contains functions that can be used for analyzing time-to-event data with right censoring, and with left truncation and right censoring. Financial support from NSF and DuPont
are acknowledged.
This package provides a programmatic interface to <http://sp2000.org.cn>, re-written based on an accompanying Species 2000 API. Access tables describing catalogue of the Chinese known species of animals, plants, fungi, micro-organisms, and more. This package also supports access to catalogue of life global <http://catalogueoflife.org>, China animal scientific database <http://zoology.especies.cn> and catalogue of life Taiwan <https://taibnet.sinica.edu.tw/home_eng.php>. The development of SP2000 package were supported by Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China <2019HJ2096001006>,Yunnan University's "Double First Class" Project <C176240405> and Yunnan University's Research Innovation Fund for Graduate Students <2019227>.
This package provides a general purpose simulation-based power analysis API for routine and customized simulation experimental designs. The package focuses exclusively on Monte Carlo simulation variants of (expected) prospective power analyses, criterion analyses, compromise analyses, sensitivity analyses, and a priori analyses. The default simulation experiment functions found within the package provide stochastic variants of the power analyses subroutines found in the G*Power 3.1 software (Faul, Erdfelder, Buchner, and Lang, 2009) <doi:10.3758/brm.41.4.1149>, along with various other parametric and non-parametric power analysis examples (e.g., mediation analyses). Supporting functions are also included, such as for building empirical power curve estimates, which utilize a similar API structure.
An extension to the individual claim simulator called SynthETIC
(on CRAN), to simulate the evolution of case estimates of incurred losses through the lifetime of an insurance claim. The transactional simulation output now comprises key dates, and both claim payments and revisions of estimated incurred losses. An initial set of test parameters, designed to mirror the experience of a real insurance portfolio, were set up and applied by default to generate a realistic test data set of incurred histories (see vignette). However, the distributional assumptions used to generate this data set can be easily modified by users to match their experiences. Reference: Avanzi B, Taylor G, Wang M (2021) "SPLICE: A Synthetic Paid Loss and Incurred Cost Experience Simulator" <arXiv:2109.04058>
.
Metapackage for implementing a variety of event-based models, with a focus on spatially explicit models. These include raster-based, event-based, and agent-based models. The core simulation components (provided by SpaDES.core
') are built upon a discrete event simulation (DES; see Matloff (2011) ch 7.8.3 <https://nostarch.com/artofr.htm>) framework that facilitates modularity, and easily enables the user to include additional functionality by running user-built simulation modules (see also SpaDES.tools
'). Included are numerous tools to visualize rasters and other maps (via quickPlot
'), and caching methods for reproducible simulations (via reproducible'). Tools for running simulation experiments are provided by SpaDES.experiment
'. Additional functionality is provided by the SpaDES.addins
and SpaDES.shiny
packages.
Spatio-temporal data have become increasingly popular in many research fields. Such data often have complex structures that are difficult to describe and estimate. This package provides reliable tools for modeling complicated spatio-temporal data. It also includes tools of online process monitoring to detect possible change-points in a spatio-temporal process over time. More specifically, the package implements the spatio-temporal mean estimation procedure described in Yang and Qiu (2018) <doi:10.1002/sim.7622>, the spatio-temporal covariance estimation procedure discussed in Yang and Qiu (2019) <doi:10.1002/sim.8315>, the three-step method for the joint estimation of spatio-temporal mean and covariance functions suggested by Yang and Qiu (2022) <doi:10.1007/s10463-021-00787-2>, the spatio-temporal disease surveillance method discussed in Qiu and Yang (2021) <doi:10.1002/sim.9150> that can accommodate the covariate effect, the spatial-LASSO-based process monitoring method proposed by Qiu and Yang (2023) <doi:10.1080/00224065.2022.2081104>, and the online spatio-temporal disease surveillance method described in Yang and Qiu (2020) <doi:10.1080/24725854.2019.1696496>.
Performance of functional kriging, cokriging, optimal sampling and simulation for spatial prediction of functional data. The framework of spatial prediction, optimal sampling and simulation are extended from scalar to functional data. SpatFD
is based on the Karhunen-Loève expansion that allows to represent the observed functions in terms of its empirical functional principal components. Based on this approach, the functional auto-covariances and cross-covariances required for spatial functional predictions and optimal sampling, are completely determined by the sum of the spatial auto-covariances and cross-covariances of the respective score components. The package provides new classes of data and functions for modeling spatial dependence structure among curves. The spatial prediction of curves at unsampled locations can be carried out using two types of predictors, and both of them report, the respective variances of the prediction error. In addition, there is a function for the determination of spatial locations sampling configuration that ensures minimum variance of spatial functional prediction. There are also two functions for plotting predicted curves at each location and mapping the surface at each time point, respectively. References Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s10260-015-0340-9>, Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s00477-016-1266-y>, Bohorquez M., Giraldo R. and Mateu J. (2021) <doi:10.1002/9781119387916>.
This package provides functions for kriging and point pattern analysis.
This package provides a new reduced-rank LDA method which works for high dimensional multi-class data.
Proposes a torch implementation of Graph Net architecture allowing different options for message passing and feature embedding.
This package is used for cell type identification in spatial transcriptomics. It also handles cell type-specific differential expression.