Manages and display stellar tracks and isochrones from Pisa low-mass database. Includes tools for isochrones construction and tracks interpolation.
This package provides functions to access Twitter's filter, sample, and user streams, and to parse the output into data frames.
An Optimization Algorithm Applied to Stratification Problem.This function aims at constructing optimal strata with an optimization algorithm based on a global optimisation technique called Biased Random Key Genetic Algorithms.
Routines for computing different types of linear estimators, based on instrumental variables (IVs), including the semi-parametric Stein-like (SPS) estimator, originally introduced by Judge and Mittelhammer (2004) <DOI:10.1198/016214504000000430>.
Allow to identify motifs in spatial-time series. A motif is a previously unknown subsequence of a (spatial) time series with relevant number of occurrences. For this purpose, the Combined Series Approach (CSA) is used.
Given a coro asynchronous generator instance that produces text, write that text into a document selection in RStudio and Positron'. This is particularly helpful for streaming large language model responses into the user's editor.
This package implements the methodological developments found in Hermes (2025) <doi:10.48550/arXiv.2503.02786>
, and allows for the statistical modeling of data consisting of multiple users that provide an ordinal rating for one or multiple items.
Easily create alerts, notifications, modals, info tips and loading screens in Shiny'. Includes several options to customize alerts and notifications by including text, icons, images and buttons. When wrapped around a Shiny output, loading screen is automatically displayed while the output is being recalculated.
This package contains three main functions including stddiff.numeric()
, stddiff.binary()
and stddiff.category()
. These are used to calculate the standardized difference between two groups. It is especially used to evaluate the balance between two groups before and after propensity score matching.
Implementation of hybrid STL decomposition based time delay neural network model for univariate time series forecasting. For method details see Jha G K, Sinha, K (2014). <doi:10.1007/s00521-012-1264-z>, Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
Adds support for R startup configuration via .Renviron.d and .Rprofile.d directories in addition to .Renviron and .Rprofile files. This makes it possible to keep private / secret environment variables separate from other environment variables. It also makes it easier to share specific startup settings by simply copying a file to a directory.
Get started with new projects by dropping a skeleton of a new project into a new or existing directory, initialise git repositories, and create reproducible environments with the renv package. The package allows for dynamically named files, folders, file content, as well as the functionality to drop individual template files into existing projects.
Stringr is a consistent, simple and easy to use set of wrappers around the fantastic stringi
package. All function and argument names (and positions) are consistent, all functions deal with "NA"'s and zero length vectors in the same way, and the output from one function is easy to feed into the input of another.
An implementation of Simultaneous Truth and Performance Level Estimation (STAPLE) <doi:10.1109/TMI.2004.828354>. This method is used when there are multiple raters for an object, typically an image, and this method fuses these ratings into one rating. It uses an expectation-maximization method to estimate this rating and the individual specificity/sensitivity for each rater.
This package implements stacked elastic net regression (Rauschenberger 2021 <doi:10.1093/bioinformatics/btaa535>). The elastic net generalises ridge and lasso regularisation (Zou 2005 <doi:10.1111/j.1467-9868.2005.00503.x>). Instead of fixing or tuning the mixing parameter alpha, we combine multiple alpha by stacked generalisation (Wolpert 1992 <doi:10.1016/S0893-6080(05)80023-1>).
Collection of model estimation, and model plotting functions related to the STEPCAM family of community assembly models. STEPCAM is a STEPwise Community Assembly Model that infers the relative contribution of Dispersal Assembly, Habitat Filtering and Limiting Similarity from a dataset consisting of the combination of trait and abundance data. See also <doi:10.1890/14-0454.1> for more information.
This package provides a collection of algorithms and functions to aid statistical modeling. It includes growth curve comparisons, limiting dilution analysis (aka ELDA), mixed linear models, heteroscedastic regression, inverse-Gaussian probability calculations, Gauss quadrature and a secure convergence algorithm for nonlinear models. It also includes advanced generalized linear model functions that implement secure convergence, dispersion modeling and Tweedie power-law families.
This is a user-friendly way to run a parallel factor (PARAFAC) analysis (Harshman, 1971) <doi:10.1121/1.1977523> on excitation emission matrix (EEM) data from dissolved organic matter (DOM) samples (Murphy et al., 2013) <doi:10.1039/c3ay41160e>. The analysis includes profound methods for model validation. Some additional functions allow the calculation of absorbance slope parameters and create beautiful plots.
Decompose a time series into seasonal, trend, and remainder components using an implementation of Seasonal Decomposition of Time Series by Loess (STL) that provides several enhancements over the STL method in the stats package. These enhancements include handling missing values, providing higher order (quadratic) loess smoothing with automated parameter choices, frequency component smoothing beyond the seasonal and trend components, and some basic plot methods for diagnostics.
For a single, known pathogen phylogeny, provides functions for enumeration of the set of compatible epidemic transmission trees, and for uniform sampling from that set. Optional arguments allow for incomplete sampling with a known number of missing individuals, multiple sampling, and known infection time limits. Always assumed are a complete transmission bottleneck and no superinfection or reinfection. See Hall and Colijn (2019) <doi:10.1093/molbev/msz058> for methodology.
This package allows for fast, correct, consistent, portable, as well as convenient character string/text processing in every locale and any native encoding. Owing to the use of the ICU library, the package provides R users with platform-independent functions known to Java, Perl, Python, PHP, and Ruby programmers. Among available features there are: pattern searching (e.g. via regular expressions), random string generation, string collation, transliteration, concatenation, date-time formatting and parsing, etc.
This package contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.
Offers a suite of functions for converting to and from (atomic) vectors, matrices, data.frames, and (3D+) arrays as well as lists of these objects. It is an alternative to the base R as.<str>.<method>()
functions (e.g., as.data.frame.array()
) that provides more useful and/or flexible restructuring of R objects. To do so, it only works with common structuring of R objects (e.g., data.frames with only atomic vector columns).
This package provides functions to model and forecast crop yields using a spatial temporal conditional copula approach. The package incorporates extreme weather covariates and Bayesian Structural Time Series models to analyze crop yield dependencies across multiple regions. Includes tools for fitting, simulating, and visualizing results. This method build upon established R packages, including Hofert et al'. (2025) <doi:10.32614/CRAN.package.copula>, Scott (2024) <doi:10.32614/CRAN.package.bsts>, and Stephenson et al'. (2024) <doi:10.32614/CRAN.package.evd>.