This package performs receptor abundance estimation for single cell RNA-sequencing data using a supervised feature selection mechanism and a thresholded gene set scoring procedure. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for reduced rank reconstruction and rank-k selection is detailed in: Javaid et al., (2022) <doi:10.1101/2022.10.08.511197>. Gene set scoring procedure is described in: Frost et al., (2020) <doi:10.1093/nar/gkaa582>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.
Fit Hawkes and log-Gaussian Cox process models with extensions. Introduced in Hawkes (1971) <doi:10.2307/2334319> a Hawkes process is a self-exciting temporal point process where the occurrence of an event immediately increases the chance of another. We extend this to consider self-inhibiting process and a non-homogeneous background rate. A log-Gaussian Cox process is a Poisson point process where the log-intensity is given by a Gaussian random field. We extend this to a joint likelihood formulation fitting a marked log-Gaussian Cox model. In addition, the package offers functionality to fit self-exciting spatiotemporal point processes. Models are fitted via maximum likelihood using TMB (Template Model Builder). Where included 1) random fields are assumed to be Gaussian and are integrated over using the Laplace approximation and 2) a stochastic partial differential equation model, introduced by Lindgren, Rue, and Lindström. (2011) <doi:10.1111/j.1467-9868.2011.00777.x>, is defined for the field(s).
Plots a QQ-Norm Plot with several Gaussian simulations.
This package provides data frames that hold certain columns and attributes persistently for data processing in dplyr'.
L2 penalized logistic regression for both continuous and discrete predictors, with forward stagewise/forward stepwise variable selection procedure.
This package provides functions to access Twitter's filter, sample, and user streams, and to parse the output into data frames.
Manages and display stellar tracks and isochrones from Pisa low-mass database. Includes tools for isochrones construction and tracks interpolation.
An Optimization Algorithm Applied to Stratification Problem.This function aims at constructing optimal strata with an optimization algorithm based on a global optimisation technique called Biased Random Key Genetic Algorithms.
Routines for computing different types of linear estimators, based on instrumental variables (IVs), including the semi-parametric Stein-like (SPS) estimator, originally introduced by Judge and Mittelhammer (2004) <DOI:10.1198/016214504000000430>.
Given a coro asynchronous generator instance that produces text, write that text into a document selection in RStudio and Positron'. This is particularly helpful for streaming large language model responses into the user's editor.
Allow to identify motifs in spatial-time series. A motif is a previously unknown subsequence of a (spatial) time series with relevant number of occurrences. For this purpose, the Combined Series Approach (CSA) is used.
This package implements the methodological developments found in Hermes (2025) <doi:10.48550/arXiv.2503.02786>
, and allows for the statistical modeling of data consisting of multiple users that provide an ordinal rating for one or multiple items.
This package contains three main functions including stddiff.numeric()
, stddiff.binary()
and stddiff.category()
. These are used to calculate the standardized difference between two groups. It is especially used to evaluate the balance between two groups before and after propensity score matching.
Easily create alerts, notifications, modals, info tips and loading screens in Shiny'. Includes several options to customize alerts and notifications by including text, icons, images and buttons. When wrapped around a Shiny output, loading screen is automatically displayed while the output is being recalculated.
Implementation of hybrid STL decomposition based time delay neural network model for univariate time series forecasting. For method details see Jha G K, Sinha, K (2014). <doi:10.1007/s00521-012-1264-z>, Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
Adds support for R startup configuration via .Renviron.d and .Rprofile.d directories in addition to .Renviron and .Rprofile files. This makes it possible to keep private / secret environment variables separate from other environment variables. It also makes it easier to share specific startup settings by simply copying a file to a directory.
Get started with new projects by dropping a skeleton of a new project into a new or existing directory, initialise git repositories, and create reproducible environments with the renv package. The package allows for dynamically named files, folders, file content, as well as the functionality to drop individual template files into existing projects.
Stringr is a consistent, simple and easy to use set of wrappers around the fantastic stringi
package. All function and argument names (and positions) are consistent, all functions deal with "NA"'s and zero length vectors in the same way, and the output from one function is easy to feed into the input of another.
An implementation of Simultaneous Truth and Performance Level Estimation (STAPLE) <doi:10.1109/TMI.2004.828354>. This method is used when there are multiple raters for an object, typically an image, and this method fuses these ratings into one rating. It uses an expectation-maximization method to estimate this rating and the individual specificity/sensitivity for each rater.
This package implements stacked elastic net regression (Rauschenberger 2021 <doi:10.1093/bioinformatics/btaa535>). The elastic net generalises ridge and lasso regularisation (Zou 2005 <doi:10.1111/j.1467-9868.2005.00503.x>). Instead of fixing or tuning the mixing parameter alpha, we combine multiple alpha by stacked generalisation (Wolpert 1992 <doi:10.1016/S0893-6080(05)80023-1>).
This package provides a collection of algorithms and functions to aid statistical modeling. It includes growth curve comparisons, limiting dilution analysis (aka ELDA), mixed linear models, heteroscedastic regression, inverse-Gaussian probability calculations, Gauss quadrature and a secure convergence algorithm for nonlinear models. It also includes advanced generalized linear model functions that implement secure convergence, dispersion modeling and Tweedie power-law families.
Collection of model estimation, and model plotting functions related to the STEPCAM family of community assembly models. STEPCAM is a STEPwise Community Assembly Model that infers the relative contribution of Dispersal Assembly, Habitat Filtering and Limiting Similarity from a dataset consisting of the combination of trait and abundance data. See also <doi:10.1890/14-0454.1> for more information.
This is a user-friendly way to run a parallel factor (PARAFAC) analysis (Harshman, 1971) <doi:10.1121/1.1977523> on excitation emission matrix (EEM) data from dissolved organic matter (DOM) samples (Murphy et al., 2013) <doi:10.1039/c3ay41160e>. The analysis includes profound methods for model validation. Some additional functions allow the calculation of absorbance slope parameters and create beautiful plots.'.
Decompose a time series into seasonal, trend, and remainder components using an implementation of Seasonal Decomposition of Time Series by Loess (STL) that provides several enhancements over the STL method in the stats package. These enhancements include handling missing values, providing higher order (quadratic) loess smoothing with automated parameter choices, frequency component smoothing beyond the seasonal and trend components, and some basic plot methods for diagnostics.