Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
The openFDA API facilitates access to Federal Drug Agency (FDA) data on drugs, devices, foodstuffs, tobacco, and more with httr2'. This package makes the API easily accessible, returning objects which the user can convert to JSON data and parse. Kass-Hout TA, Xu Z, Mohebbi M et al. (2016) <doi:10.1093/jamia/ocv153>.
Access a variety of PubMed data through a single, user-friendly interface, including abstracts <https://pubmed.ncbi.nlm.nih.gov/>, bibliometrics from iCite <https://icite.od.nih.gov/>, pubtations from PubTator3 <https://www.ncbi.nlm.nih.gov/research/pubtator3/>, and full-text records from PMC <https://www.ncbi.nlm.nih.gov/pmc/>.
Programs for Martinussen and Scheike (2006), `Dynamic Regression Models for Survival Data', Springer Verlag. Plus more recent developments. Additive survival model, semiparametric proportional odds model, fast cumulative residuals, excess risk models and more. Flexible competing risks regression including GOF-tests. Two-stage frailty modelling. PLS for the additive risk model. Lasso in the ahaz package.
Principal Component Analysis (PCA) is a statistical technique used to reduce the dimensionality of a dataset while preserving as much variability as possible. By transforming the original variables into a new set of uncorrelated variables called principal components, PCA helps in identifying patterns and simplifying the complexity of high-dimensional data. The RankPCA package provides a streamlined workflow for performing PCA on datasets containing both categorical and continuous variables. It facilitates data preprocessing, encoding of categorical variables, and computes PCA to determine the optimal number of principal components based on a specified variance threshold. The package also computes composite indices for ranking observations, which can be useful for various analytical purposes. Garai, S., & Paul, R. K. (2023) <doi:10.1016/j.iswa.2023.200202>.
Generate causally-simulated data to serve as ground truth for evaluating methods in causal discovery and effect estimation. The package provides tools to assist in defining functions based on specified edges, and conversely, defining edges based on functions. It enables the generation of data according to these predefined functions and causal structures. This is particularly useful for researchers in fields such as artificial intelligence, statistics, biology, medicine, epidemiology, economics, and social sciences, who are developing a general or a domain-specific methods to discover causal structures and estimate causal effects. Data simulation adheres to principles of structural causal modeling. Detailed methodologies and examples are documented in our vignette, available at <https://htmlpreview.github.io/?https://github.com/herdiantrisufriyana/rcausim/blob/master/doc/causal_simulation_exemplar.html>.
This package provides a method to refit and correct the diploid region in copy number profiles. It uses a clustering algorithm to identify pathology-specific normal (diploid) chromosomes and then use their copy number signal to refit the whole profile. The package is composed by three functions: DRrefit (the main function), ComputeNormalChromosome and PlotCluster.
The hdxmsqc package enables us to analyse and visualise the quality of HDX-MS experiments. Either as a final quality check before downstream analysis and publication or as part of a interative procedure to determine the quality of the data. The package builds on the QFeatures and Spectra packages to integrate with other mass-spectrometry data.
The r-nleqslv package solves a system of nonlinear equations using a Broyden or a Newton method with a choice of global strategies such as line search and trust region. There are options for using a numerical or user supplied Jacobian, for specifying a banded numerical Jacobian and for allowing a singular or ill-conditioned Jacobian.
This package is an R package designed for QC, analysis, and exploration of single cell RNA-seq data. It easily enables widely-used analytical techniques, including the identification of highly variable genes, dimensionality reduction; PCA, ICA, t-SNE, standard unsupervised clustering algorithms; density clustering, hierarchical clustering, k-means, and the discovery of differentially expressed genes and markers.
Plots simulation results of clinical trials. Its main feature is allowing users to simultaneously investigate the impact of several simulation input dimensions through dynamic filtering of the simulation results. A more detailed description of the app can be found in Meyer et al. <DOI:10.1016/j.softx.2023.101347> or the vignettes on GitHub'.
Easily launch, track, and control functions as background-parallel jobs. Includes robust utilities for job status, error handling, resource monitoring, and result collection. Designed for scalable workflows in interactive and automated settings (local or remote). Integrates with multiple backends; supports flexible automation pipelines and live job tracking. For more information, see <https://anirbanshaw24.github.io/bakerrr/>.
This package provides functions for data augmentation using the Bayesian discount prior method for single arm and two-arm clinical trials, as described in Haddad et al. (2017) <doi:10.1080/10543406.2017.1300907>. The discount power prior methodology was developed in collaboration with the The Medical Device Innovation Consortium (MDIC) Computer Modeling & Simulation Working Group.
Querying, extracting, and processing large-scale network data from Neo4j databases using the Neo4j Bolt <https://neo4j.com/docs/bolt/current/bolt/> protocol. This interface supports efficient data retrieval, batch processing for large datasets, and seamless conversion of query results into R data frames, making it ideal for bioinformatics, computational biology, and other graph-based applications.
This model fitting tool incorporates cyclic coordinate descent and majorization-minimization approaches to fit a variety of regression models found in large-scale observational healthcare data. Implementations focus on computational optimization and fine-scale parallelization to yield efficient inference in massive datasets. Please see: Suchard, Simpson, Zorych, Ryan and Madigan (2013) <doi:10.1145/2414416.2414791>.
This package provides functions to analyze the spatial distribution of biodiversity, in particular categorical analysis of neo- and paleo-endemism (CANAPE) as described in Mishler et al (2014) <doi:10.1038/ncomms5473>. canaper conducts statistical tests to determine the types of endemism that occur in a study area while accounting for the evolutionary relationships of species.
This package performs a Correspondence Analysis (CA) on a contingency table and creates a scatterplot of the row and column points on the selected dimensions. Optionally, the function can add segments to the plot to visualize significant associations between row and column categories on the basis of positive (unadjusted) standardized residuals larger than a given threshold.
Estimation of population size of migratory caribou herds based on large scale aggregations monitored by radio telemetry. It implements the methodology found in the article by Rivest et al. (1998) about caribou abundance estimation. It also includes a function based on the Lincoln-Petersen Index as applied to radio telemetry data by White and Garrott (1990).
Calculates the dutch air quality index (LKI). This index was created on the basis of scientific studies of the health effects of air pollution. From these studies it can be deduced at what concentrations a certain percentage of the population can be affected. For more information see: <https://www.rivm.nl/bibliotheek/rapporten/2014-0050.pdf>.
This package provides high-level access to neuroimaging data from standard software packages like FreeSurfer <http://freesurfer.net/> on the level of subjects and groups. Load morphometry data, surfaces and brain parcellations based on atlases. Mask data using labels, load data for specific atlas regions only, and visualize data and statistical results directly in R'.
This package performs alignment, PCA, and modeling of multidimensional and unidimensional functions using the square-root velocity framework (Srivastava et al., 2011 <doi:10.48550/arXiv.1103.3817> and Tucker et al., 2014 <DOI:10.1016/j.csda.2012.12.001>). This framework allows for elastic analysis of functional data through phase and amplitude separation.
This package provides classes for GeoJSON to make working with GeoJSON easier. Includes S3 classes for GeoJSON classes with brief summary output, and a few methods such as extracting and adding bounding boxes, properties, and coordinate reference systems; working with newline delimited GeoJSON'; and serializing to/from Geobuf binary GeoJSON format.
This package provides a suite of diagnostic tools for hierarchical (multilevel) linear models. The tools include not only leverage and traditional deletion diagnostics (Cook's distance, covratio, covtrace, and MDFFITS) but also convenience functions and graphics for residual analysis. Models can be fit using either lmer in the lme4 package or lme in the nlme package.
This package provides a collection of Irucka Embry's miscellaneous USGS functions (processing .exp and .psf files, statistical error functions, "+" dyadic operator for use with NA, creating ADAPS and QW spreadsheet files, calculating saturated enthalpy). Irucka created these functions while a Cherokee Nation Technology Solutions (CNTS) United States Geological Survey (USGS) Contractor and/or USGS employee.