Likelihood based optimal partitioning and indicator species analysis. Finding the best binary partition for each species based on model selection, with the possibility to take into account modifying/confounding variables as described in Kemencei et al. (2014) <doi:10.1556/ComEc.15.2014.2.6>
. The package implements binary and multi-level response models, various measures of uncertainty, Lorenz-curve based thresholding, with native support for parallel computations.
Hexadecimal codes are typically used to represent colors in R. Connecting these codes to their colors requires practice or memorization. palette provides a vctrs class for working with color palettes, including printing and plotting functions. The goal of the class is to place visual representations of color palettes directly on or, at least, next to their corresponding character representations. Palette extensions also are provided for data frames using pillar'.
Complex graphical representations of data are best explored using interactive elements. parcats adds interactive graphing capabilities to the easyalluvial package. The plotly.js parallel categories diagrams offer a good framework for creating interactive flow graphs that allow manual drag and drop sorting of dimensions and categories, highlighting single flows and displaying mouse over information. The plotly.js dependency is quite heavy and therefore is outsourced into a separate package.
Generates multivariate data with count and continuous variables with a pre-specified correlation matrix. The count and continuous variables are assumed to have Poisson and normal marginals, respectively. The data generation mechanism is a combination of the normal to anything principle and a connection between Poisson and normal correlations in the mixture. The details of the method are explained in Yahav et al. (2012) <DOI:10.1002/asmb.901>.
Computes nonparametric p-values for the potential class memberships of new observations as well as cross-validated p-values for the training data. The p-values are based on permutation tests applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, k nearest neighbors', weighted nearest neighbors or penalized logistic regression'. Additionally, it provides graphical displays and quantitative analyses of the p-values.
For a single, known pathogen phylogeny, provides functions for enumeration of the set of compatible epidemic transmission trees, and for uniform sampling from that set. Optional arguments allow for incomplete sampling with a known number of missing individuals, multiple sampling, and known infection time limits. Always assumed are a complete transmission bottleneck and no superinfection or reinfection. See Hall and Colijn (2019) <doi:10.1093/molbev/msz058> for methodology.
Different multiple testing procedures for correlation tests are implemented. These procedures were shown to theoretically control asymptotically the Family Wise Error Rate (Roux (2018) <https://tel.archives-ouvertes.fr/tel-01971574v1>) or the False Discovery Rate (Cai & Liu (2016) <doi:10.1080/01621459.2014.999157>). The package gather four test statistics used in correlation testing, four FWER procedures with either single step or stepdown versions, and four FDR procedures.
This package provides HTTP error helpers. Methods are included for general purpose HTTP error handling, as well as individual methods for every HTTP status code, both via status code numbers as well as their descriptive names. It supports the ability to adjust behavior to stop, message or warning. It includes the ability to use a custom whisker template to have any configuration of status code, short description, and verbose message.
This package can be used to predict the r-species accumulation curve (r-SAC), which is the number of species represented at least r times as a function of the sampling effort. When r = 1, the curve is known as the species accumulation curve, or the library complexity curve in high-throughput genomic sequencing. The package includes both parametric and nonparametric methods, as described by Deng C, et al. (2018).
This package provides a fast implementation of a key-value store. Environments are commonly used as key-value stores, but every time a new key is used, it is added to R's global symbol table, causing a small amount of memory leakage. This can be problematic in cases where many different keys are used. Fastmap avoids this memory leak issue by implementing the map using data structures in C++.
This package provides tools to visualize simple graphs (networks) based on a transition matrix, utilities to plot flow diagrams, visualizing webs, electrical networks, etc. It also includes supporting material for the book "A practical guide to ecological modelling - using R as a simulation platform" by Karline Soetaert and Peter M.J. Herman (2009) and the book "Solving Differential Equations in R" by Karline Soetaert, Jeff Cash and Francesca Mazzia (2012).
Alga aims to provide solid mathematical abstractions to algebra-focused applications. It defines and organizes through trait inheritance the basic building blocks of general algebraic structures. Specific implementations of algebraic structure traits are left to other crates. Higher-level traits for specialized domains of algebra (like linear algebra) are also provided and will prove useful for applications that include code that is generic with regard to the algebraic entity types.
Rofi-pass provides a way to manipulate information stored using password-store through rofi interface:
open URLs of entries with hotkey;
type any field from entry;
auto-typing of user and/or password fields;
auto-typing username based on path;
auto-typing of more than one field, using the autotype entry;
bookmarks mode (open stored URLs in browser, default: Alt+x).
Rcpp Bindings for the C code of the Corpus Workbench ('CWB'), an indexing and query engine to efficiently analyze large corpora (<https://cwb.sourceforge.io>). RcppCWB
is licensed under the GNU GPL-3, in line with the GPL-3 license of the CWB (<https://www.r-project.org/Licenses/GPL-3>). The CWB relies on pcre2 (BSD license, see <https://github.com/PCRE2Project/pcre2/blob/master/LICENCE.md>) and GLib (LGPL license, see <https://www.gnu.org/licenses/lgpl-3.0.en.html>). See the file LICENSE.note for further information. The package includes modified code of the rcqp package (GPL-2, see <https://cran.r-project.org/package=rcqp>). The original work of the authors of the rcqp package is acknowledged with great respect, and they are listed as authors of this package. To achieve cross-platform portability (including Windows), using Rcpp for wrapper code is the approach used by RcppCWB
'.
This package provides functions for downloading data from the Bank for International Settlements (BIS; <https://www.bis.org/>) in Basel. Supported are only full datasets in (typically) CSV format. The package is lightweight and without dependencies; suggested packages are used only if data is to be transformed into particular data structures, for instance into zoo objects. Downloaded data can optionally be cached, to avoid repeated downloads of the same files.
This package provides a fast integrative genetic association test for rare diseases based on a model for disease status given allele counts at rare variant sites. Probability of association, mode of inheritance and probability of pathogenicity for individual variants are all inferred in a Bayesian framework - A Fast Association Test for Identifying Pathogenic Variants Involved in Rare Diseases', Greene et al 2017 <doi:10.1016/j.ajhg.2017.05.015>.
This package implements a specific form of segmented linear regression with two independent variables. The visualization of that function looks like a quarter segment of a cowbell giving the package its name. The package has been specifically constructed for the case where minimum and maximum value of the dependent and two independent variables are known a prior, which is usually the case when those values are derived from Likert scales.
This package provides a flexible tool for calculating carbon-equivalent emissions. Mostly using data from the UK Government's Greenhouse Gas Conversion Factors report <https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023>, it facilitates transparent emissions calculations for various sectors, including travel, accommodation, and clinical activities. The package is designed for easy integration into R workflows, with additional support for shiny applications and community-driven extensions.
The US EPA ECOTOX database is a freely available database with a treasure of aquatic and terrestrial ecotoxicological data. As the online search interface doesn't come with an API, this package provides the means to easily access and search the database in R. To this end, all raw tables are downloaded from the EPA website and stored in a local SQLite database <doi:10.1016/j.chemosphere.2024.143078>.
Estimates the time-varying reproduction number, rate of spread, and doubling time using a range of open-source tools (Abbott et al. (2020) <doi:10.12688/wellcomeopenres.16006.1>), and current best practices (Gostic et al. (2020) <doi:10.1101/2020.06.18.20134858>). It aims to help users avoid some of the limitations of naive implementations in a framework that is informed by community feedback and is actively supported.
Homomorphic encryption (Brakerski and Vaikuntanathan (2014) <doi:10.1137/120868669>) using Ring Learning with Errors (Lyubashevsky et al. (2012) <https://eprint.iacr.org/2012/230>) is a form of Learning with Errors (Regev (2005) <doi:10.1145/1060590.1060603>) using polynomial rings over finite fields. Functions to generate the required polynomials (using polynom'), with various distributions of coefficients are provided. Additionally, functions to generate and take coefficient modulo are provided.
Batch processing framework for ellmer chat models. Provides both sequential and parallel processing of chat interactions with features including tool calling and structured data extraction. Enables workflow management through progress tracking and recovery and automatic retry with backoff. Additional quality-of-life features include verbosity (or echo) control and sound notifications. Parallel processing is implemented via the future framework. Includes methods for retrieving progress status, chat texts, and chat objects.
Function ModEstM()
is the only one of this package, it estimates the modes of an empirical univariate distribution. It relies on the stats::density()
function, even for input control. Due to very good performance of the density estimation, computation time is not an issue. The multiple modes are handled using dplyr::group_by()
. For conditions and rates of convergences, see Eddy (1980) <doi:10.1214/aos/1176345080>.
Inference of Multiscale graphical models with neighborhood selection approach. The method is based on solving a convex optimization problem combining a Lasso and fused-group Lasso penalties. This allows to infer simultaneously a conditional independence graph and a clustering partition. The optimization is based on the Continuation with Nesterov smoothing in a Shrinkage-Thresholding Algorithm solver (Hadj-Selem et al. 2018) <doi:10.1109/TMI.2018.2829802> implemented in python.