Create data that displays generative art when mapped into a ggplot2 plot. Functionality includes specialized data frame creation for geometric shapes, tools that define artistic color palettes, tools for geometrically transforming data, and other miscellaneous tools that are helpful when using ggplot2 for generative art.
This package provides a novel data-augmentation Markov chain Monte Carlo sampling algorithm to fit a progressive compartmental model of disease in a Bayesian framework Morsomme, R.N., Holloway, S.T., Ryser, M.D. and Xu J. (2024) <doi:10.48550/arXiv.2408.14625>
.
Calculation of physical (e.g. aerodynamic conductance, surface temperature), and physiological (e.g. canopy conductance, water-use efficiency) ecosystem properties from eddy covariance data and accompanying meteorological measurements. Calculations assume the land surface to behave like a big-leaf and return bulk ecosystem/canopy variables.
An implementation of Fan plots for cytometry data in ggplot2'. For reference see Britton, E.; Fisher, P. & J. Whitley (1998) The Inflation Report Projections: Understanding the Fan Chart <https://www.bankofengland.co.uk/quarterly-bulletin/1998/q1/the-inflation-report-projections-understanding-the-fan-chart>).
This package performs forward and backwards stepwise regression for the Proportional subdistribution hazards model in competing risks (Fine & Gray 1999). Procedure uses AIC, BIC and BICcr as selection criteria. BICcr has a penalty of k = log(n*), where n* is the number of primary events.
This package provides a daily summary of COVID-19 cases, deaths, recovered, tests, vaccinations, and hospitalizations for 230+ countries, 760+ regions, and 12000+ administrative divisions of lower level. Includes policy measures, mobility data, and geospatial identifiers. Data source: COVID-19 Data Hub <https://covid19datahub.io>.
We aim to deal with the average treatment effect (ATE), where the data are subject to high-dimensionality and measurement error. This package primarily contains two functions, which are used to generate artificial data and estimate ATE with high-dimensional and error-prone data accommodated.
For multiple testing. Computes estimates and confidence bounds for the False Discovery Proportion (FDP), the fraction of false positives among all rejected hypotheses. The methods in the package use permutations of the data. Doing so, they take into account the dependence structure in the data.
This package implements the three-step workflow for robust analysis of change in two repeated measurements of continuous outcomes, described in Ning et al. (in press), "Robust estimation of the effect of an exposure on the change in a continuous outcome", BMC Medical Research Methodology.
Computes and visualize the results of the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) <DOI:10.1137/080718851>. The algorithm is available in parallel for the independent values of parameter c. Additionally, fast RQA is added to distinguish chaos from noise.
Mechanisms to parallelize dependent tasks in a manner that optimizes the compute resources available. It provides access to "delayed" computations, which may be parallelized using futures. It is, to an extent, a facsimile of the Dask library (<https://www.dask.org/>), for the Python language.
Prepare the results of a DCE to be analysed through choice models.'DCEmgmt reshapes DCE data from wide to long format considering the special characteristics of a DCE. DCEmgmt includes the function DCEestm which estimates choice models once the database has been reshaped with DCEmgmt'.
Provide tools for drought monitoring based on univariate and multivariate drought indicators.Statistical drought prediction based on Ensemble Streamflow Prediction (ESP), drought risk assessments, and drought propagation are also provided. Please see Hao Zengchao et al. (2017) <doi:10.1016/j.envsoft.2017.02.008>.
This package provides functions for estimating spectral density operator of functional time series (FTS) and comparing the spectral density operator of two functional time series, in a way that allows detection of differences of the spectral density operator in frequencies and along the curve length.
This package performs statistical data analysis of various Plant Breeding experiments. Contains functions for Line by Tester analysis as per Arunachalam, V.(1974) <http://repository.ias.ac.in/89299/> and Diallel analysis as per Griffing, B. (1956) <https://www.publish.csiro.au/bi/pdf/BI9560463>.
Aids in the calculation and visualization of regions of non-significance using the Johnson-Neyman technique and its extensions as described by Bauer and Curran (2005) <doi:10.1207/s15327906mbr4003_5> to assess the influence of categorical and continuous moderators. Allows correcting for phylogenetic relatedness.
This package provides tools for detecting and correcting sample mix-ups between two sets of measurements, such as between gene expression data on two tissues. This is a revised version of the lineup package, to be more general and not tied to the qtl package.
Create interactive time series visualizations. linevis includes an extensive API to manipulate time series after creation, and supports getting data out of the visualization. Based on the timevis package and the vis.js Timeline JavaScript
library <https://visjs.github.io/vis-timeline/docs/graph2d/>.
Supervised classification methods, which (if asked) can provide step-by-step explanations of the algorithms used, as described in PK Josephine et. al., (2021) <doi:10.59176/kjcs.v1i1.1259>; and datasets to test them on, which highlight the strengths and weaknesses of each technique.
We developed an approach to detect differential expression features in long non-coding RNA low counts, using generalized linear model with zero-inflated exponential quasi likelihood ratio test. Methods implemented in this package are described in Li (2019) <doi:10.1186/s12864-019-5926-4>.
This package provides a mechanism to plot an interactive map using Mapbox GL (<https://docs.mapbox.com/mapbox-gl-js/api/>), a javascript library for interactive maps, and Deck.gl (<https://deck.gl/>), a javascript library which uses WebGL
for visualising large data sets.
This package provides a tool for drawing sassy UML (Unified Modeling Language) diagrams based on a simple syntax, see <https://www.nomnoml.com>. Supports styling, R Markdown and exporting diagrams in the PNG format. Note: you need a chromium based browser installed on your system.
This package provides a collection of data structures that represent volumetric brain imaging data. The focus is on basic data handling for 3D and 4D neuroimaging data. In addition, there are function to read and write NIFTI files and limited support for reading AFNI files.
This package provides a graph visualization engine that emphasizes on aesthetics at the same time providing default parameters that yield out-of-the-box-nice visualizations. The package is built on top of The Grid Graphics Package and seamlessly work with igraph and network objects.