Reference data sets of species sensitivities to compare the results of fitting species sensitivity distributions using software such as ssdtools and Burrlioz'. It consists of 17 primary data sets from four different Australian and Canadian organizations as well as five datasets from anonymous sources. It also includes a data set of the results of fitting various distributions using different software.
This groundbreaking technical indicator directly integrates volatility into price averaging by weighting median range-bound prices using the True Range. Unlike conventional metrics such as TWAP (Time-Weighted Average Price), which focuses solely on time, or VWAP (Volume-Weighted Average Price), which emphasizes volume, TrueWAP captures fluctuating market behavior by reflecting true price movement within high/low performance boundaries.
Mixed effects modeling with warping for functional data using B- spline. Warping coefficients are considered as random effects, and warping functions are general functions, parameters representing the projection onto B- spline basis of a part of the warping functions. Warped data are modelled by a linear mixed effect functional model, the noise is Gaussian and independent from the warping functions.
XAItest is an R Package that identifies features using eXplainable AI (XAI) methods such as SHAP or LIME. This package allows users to compare these methods with traditional statistical tests like t-tests, empirical Bayes, and Fisher's test. Additionally, it includes a system that enables the comparison of feature importance with p-values by incorporating calibrated simulated data.
The affyPLM provides a package that extends and improves the functionality of the base affy package. For speeding up the runs, it includes routines that make heavy use of compiled code. The central focus is on implementation of methods for fitting probe-level models and tools using these models. PLM based quality assessment tools are also provided.
This package provides the Molecular Signatures Database (MSigDB) gene sets typically used with the Gene Set Enrichment Analysis (GSEA) software in a standard R data frame with key-value pairs. Included are the original human gene symbols and Entrez IDs as well as the equivalents for various frequently studied model organisms such as mouse, rat, pig, fly, and yeast.
This package provides estimators for multinomial logit models in their conditional logit and baseline logit variants, with or without random effects, with or without overdispersion. Random effects models are estimated using the PQL technique (based on a Laplace approximation) or the MQL technique (based on a Solomon-Cox approximation). Estimates should be treated with caution if the group sizes are small.
Ggplot2 is an implementation of the grammar of graphics in R. It combines the advantages of both base and lattice graphics: conditioning and shared axes are handled automatically, and you can still build up a plot step by step from multiple data sources. It also implements a sophisticated multidimensional conditioning system and a consistent interface to map data to aesthetic attributes.
RadeonTop monitors resource consumption on supported AMD Radeon Graphics Processing Units (GPUs), either in real time as bar graphs on a terminal or saved to a file for further processing. It measures both the activity of the GPU as a whole, which is also accurate during OpenCL computations, as well as separate component statistics that are only meaningful under OpenGL graphics workloads.
This package provides a collection of algorithms and functions to aid statistical modeling. It includes growth curve comparisons, limiting dilution analysis (aka ELDA), mixed linear models, heteroscedastic regression, inverse-Gaussian probability calculations, Gauss quadrature and a secure convergence algorithm for nonlinear models. It also includes advanced generalized linear model functions that implement secure convergence, dispersion modeling and Tweedie power-law families.
This package performs requests to the Arctos API to download data. Provides a set of builder classes for performing complex requests, as well as a set of simple functions for automating many common requests and workflows. More information about Arctos can be found in Cicero et al. (2024) <doi:10.1371/journal.pone.0296478> or on their website <https://arctosdb.org/>.
Power and associated functions useful in prospective planning and monitoring of a clinical trial when a recurrent event endpoint is to be assessed by the robust Andersen-Gill model, see Lin, Wei, Yang, and Ying (2010) <doi:10.1111/1467-9868.00259>. The equations developed in Ingel and Jahn-Eimermacher (2014) <doi:10.1002/bimj.201300090> and their consequences are employed.
Generation of natural looking noise has many application within simulation, procedural generation, and art, to name a few. The ambient package provides an interface to the FastNoise C++ library and allows for efficient generation of perlin, simplex, worley, cubic, value, and white noise with optional perturbation in either 2, 3, or 4 (in case of simplex and white noise) dimensions.
Bell regression models for count data with overdispersion. The implemented models account for ordinary and zero-inflated regression models under both frequentist and Bayesian approaches. Theoretical details regarding the models implemented in the package can be found in Castellares et al. (2018) <doi:10.1016/j.apm.2017.12.014> and Lemonte et al. (2020) <doi:10.1080/02664763.2019.1636940>.
This package provides a reliable and efficient tool for cleaning univariate time series data. It implements reliable and efficient procedures for automating the process of cleaning univariate time series data. The package provides integration with already developed and deployed tools for missing value imputation and outlier detection. It also provides a way of visualizing large time-series data in different resolutions.
Several functions for working with mixed effects regression models for limited dependent variables. The functions facilitate post-estimation of model predictions or margins, and comparisons between model predictions for assessing or probing moderation. Additional helper functions facilitate model comparisons and implements simulation-based inference for model predictions of alternative-specific outcome models. See also, Melamed and Doan (2024, ISBN: 978-1032509518).
This package contains the support functions for the Time Series Analysis book. We present a function to calculate MSE and MAE for inputs of actual and forecast values. We also have the code for disaggregation as found in Wei and Stram (1990, <doi:10.1111/j.2517-6161.1990.tb01799.x>), and Hodgess and Wei (1996, "Temporal Disaggregation of Time Series").
This package provides a port of the web-based software DAGitty', available at <https://dagitty.net>, for analyzing structural causal models (also known as directed acyclic graphs or DAGs). This package computes covariate adjustment sets for estimating causal effects, enumerates instrumental variables, derives testable implications (d-separation and vanishing tetrads), generates equivalent models, and includes a simple facility for data simulation.
Estimation of the components of an ETAS (Epidemic Type Aftershock Sequence) model for earthquake description. Non-parametric background seismicity can be estimated through FLP (Forward Likelihood Predictive). New version 2.0.0: covariates have been introduced to explain the effects of external factors on the induced seismicity; the parametrization has been changed; Chiodi, Adelfio (2017)<doi:10.18637/jss.v076.i03>.
Books are "Linear Models with R" published 1st Ed. August 2004, 2nd Ed. July 2014, 3rd Ed. February 2025 by CRC press, ISBN 9781439887332, and "Extending the Linear Model with R" published by CRC press in 1st Ed. December 2005 and 2nd Ed. March 2016, ISBN 9781584884248 and "Practical Regression and ANOVA in R" contributed documentation on CRAN (now very dated).
This package provides a ggplot2'-consistent approach to generating 2D displays of volumetric brain imaging data. Display data from multiple NIfTI images using standard ggplot2 conventions such scales, limits, and themes to control the appearance of displays. The resulting plots are returned as patchwork objects, inheriting from ggplot', allowing for any standard modifications of display aesthetics supported by ggplot2'.
Implementation of Discrete Symmetric Optimal Kernel for estimating count data distributions, as described by T. Senga Kiessé and G. Durrieu (2024) <doi:10.1016/j.spl.2024.110078>.The nonparametric estimator using the discrete symmetric optimal kernel was illustrated on simulated data sets and a real-word data set included in the package, in comparison with two other discrete symmetric kernels.
This package contains (1) event-related brain potential data recorded from 10 participants at electrodes Fz, Cz, Pz, and Oz (0--300 ms) in the context of Antoine Tremblay's PhD thesis (Tremblay, 2009); (2) ERP amplitudes at electrode Fz restricted to the 100 to 175 millisecond time window; and (3) plotting data generated from a linear mixed-effects model.
Integrating morphological modeling with machine learning to support structured decision-making (e.g., in management and consulting). The package enumerates a morphospace of feasible configurations and uses random forests to estimate class probabilities over that space, bridging deductive model exploration with empirical validation. It includes utilities for factorizing inputs, model training, morphospace construction, and an interactive shiny app for scenario exploration.