Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions are included for recalling AQL (Acceptable Quality Level or Acceptance Quality Level) Based single, double, and multiple attribute sampling plans from the Military Standard (MIL-STD-105E) - American National Standards Institute/American Society for Quality (ANSI/ASQ Z1.4) tables and for retrieving variable sampling plans from Military Standard (MIL-STD-414) - American National Standards Institute/American Society for Quality (ANSI/ASQ Z1.9) tables. The sources for these tables are listed in the URL: field. Also included are functions for computing the OC (Operating Characteristic) and ASN (Average Sample Number) coordinates for the attribute plans it recalls, and functions for computing the estimated proportion nonconforming and the maximum allowable proportion nonconforming for variable sampling plans. The MIL-STD AQL Sampling schemes were the most used and copied set of standards in the world. They are intended to be used for sampling a stream of lots, and were used in contract agreements between supplier and customer companies. When the US military dropped support of MIL-STD 105E and 414, The American National Standards Institute (ANSI) and the International Standards Organization (ISO) adopted the standard with few changes or no changes to the central tables. This package is useful because its computer implementation of these tables duplicates that available in other commercial software and subscription online calculators.
Animation of observed trajectories using spline-based interpolation (see for example, Buderman, F. E., Hooten, M. B., Ivan, J. S. and Shenk, T. M. (2016), <doi:10.1111/2041-210X.12465> "A functional model for characterizing long-distance movement behaviour". Methods Ecol Evol). Intended to be used exploratory data analysis, and perhaps for preparation of presentations.
Raw and processed versions of the data from De Cock (2011) <http://ww2.amstat.org/publications/jse> are included in the package.
This is an implementation of the Generalized Discrimination Score (also known as Two Alternatives Forced Choice Score, 2AFC) for various representations of forecasts and verifying observations. The Generalized Discrimination Score is a generic forecast verification framework which can be applied to any of the following verification contexts: dichotomous, polychotomous (ordinal and nominal), continuous, probabilistic, and ensemble. A comprehensive description of the Generalized Discrimination Score, including all equations used in this package, is provided by Mason and Weigel (2009) <doi:10.1175/MWR-D-10-05069.1>.
The functions are designed to calculate the most widely-used county-level variables in agricultural production or agricultural-climatic and weather analyses. To operate some functions in this package needs download of the bulk PRISM raster. See the examples, testing versions and more details from: <https://github.com/ysd2004/acdcR>.
This package provides a software that implements a method for partitioning genetic trends to quantify the sources of genetic gain in breeding programmes. The partitioning method is described in Garcia-Cortes et al. (2008) <doi:10.1017/S175173110800205X>. The package includes the main function AlphaPart for partitioning breeding values and auxiliary functions for manipulating data and summarizing, visualizing, and saving results.
This package provides functions for Arps decline-curve analysis on oil and gas data. Includes exponential, hyperbolic, harmonic, and hyperbolic-to-exponential models as well as the preceding with initial curtailment or a period of linear rate buildup. Functions included for computing rate, cumulative production, instantaneous decline, EUR, time to economic limit, and performing least-squares best fits.
Another implementation of object-orientation in R. It provides syntactic sugar for the S4 class system and two alternative new implementations. One is an experimental version built around S4 and the other one makes it more convenient to work with lists as objects.
Estimate the causal treatment effect for subjects that can adhere to one or both of the treatments. Given longitudinal data with missing observations, consistent causal effects are calculated. Unobserved potential outcomes are estimated through direct integration as described in: Qu et al., (2019) <doi:10.1080/19466315.2019.1700157> and Zhang et. al., (2021) <doi:10.1080/19466315.2021.1891965>.
Facilitates access to the data from the Atlas do Estado Brasileiro (<https://www.ipea.gov.br/atlasestado/>), maintained by the Instituto de Pesquisa Econômica Aplicada (Ipea). It allows users to search for specific series, list series or themes, and download data when available.
This package performs approximate unconditional and permutation testing for 2x2 contingency tables. Motivated by testing for disease association with rare genetic variants in case-control studies. When variants are extremely rare, these tests give better control of Type I error than standard tests.
Parse R code in a given directory for R packages and attempt to install them from CRAN or GitHub. Optionally use a dependencies file for tighter control over which package versions to install.
Calculate confidence intervals for alpha and standardized alpha using asymptotic theory or the studentized bootstrap, with or without transformations. Supports the asymptotic distribution-free method of Maydeu-Olivares, et al. (2007) <doi:10.1037/1082-989X.12.2.157>, the pseudo-elliptical method of Yuan & Bentler (2002) <doi:10.1007/BF02294845>, and the normal method of van Zyl et al. (1999) <doi:10.1007/BF02296146>, for both coefficient alpha and standardized alpha.
This package provides a powerful tool for automating the early detection of seasonal epidemic onsets in time series data. It offers the ability to estimate growth rates across consecutive time intervals, calculate the sum of cases (SoC) within those intervals, and estimate seasonal onsets within user defined seasons. With use of a disease-specific threshold it also offers the possibility to estimate seasonal onset of epidemics. Additionally it offers the ability to estimate burden levels for seasons based on historical data. It is aimed towards epidemiologists, public health professionals, and researchers seeking to identify and respond to seasonal epidemics in a timely fashion.
The Australian Statistical Geography Standard ('ASGS') is a set of shapefiles by the Australian Bureau of Statistics. This package provides an interface to those shapefiles, as well as methods for converting coordinates to shapefiles.
We provide a stage-wise selection method using genetic algorithm which can perform fast interaction selection in high-dimensional linear regression models with two-way interaction effects under strong, weak, or no heredity condition. Ye, C.,and Yang,Y. (2019) <doi:10.1109/TIT.2019.2913417>.
This package provides a quick method for visualizing non-aggregated line-list or aggregated census data stratified by age and one or two categorical variables (e.g. gender and health status) with any number of values. It returns a ggplot object, allowing the user to further customize the output. This package is part of the R4Epis project <https://r4epis.netlify.app/>.
This package provides tools for designing and analyzing Acceptance Sampling plans. Supports both Attributes Sampling (Binomial and Poisson distributions) and Variables Sampling (Normal and Beta distributions), enabling quality control for fractional and compositional data. Uses nonlinear programming for sampling plan optimization, minimizing sample size while controlling producer's and consumer's risks. Operating Characteristic curves are available for plan visualization.
Calculating predictive model performance measures adjusted for predictor distributions using density ratio method (Sugiyama et al., (2012, ISBN:9781139035613)). L1 and L2 error for continuous outcome and C-statistics for binomial outcome are computed.
Calculates some antecedent discharge conditions useful in water quality modeling. Includes methods for calculating flow anomalies, base flow, and smooth discounted flows from daily flow measurements. Antecedent discharge algorithms are described and reviewed in Zhang and Ball (2017) <doi:10.1016/j.jhydrol.2016.12.052>.
It performs All-Resolutions Inference (ARI) on functional Magnetic Resonance Image (fMRI) data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis. The method is described in Rosenblatt, Finos, Weeda, Solari, Goeman (2018) <doi:10.1016/j.neuroimage.2018.07.060>.
Allow user to run the Adaptive Correlated Spike and Slab (ACSS) algorithm, corresponding INdependent Spike and Slab (INSS) algorithm, and Giannone, Lenza and Primiceri (GLP) algorithm with adaptive burn-in. All of the three algorithms are used to fit high dimensional data set with either sparse structure, or dense structure with smaller contributions from all predictors. The state-of-the-art GLP algorithm is in Giannone, D., Lenza, M., & Primiceri, G. E. (2021, ISBN:978-92-899-4542-4) "Economic predictions with big data: The illusion of sparsity". The two new algorithms, ACSS algorithm and INSS algorithm, and the discussion on their performance can be seen in Yang, Z., Khare, K., & Michailidis, G. (2024, submitted to Journal of Business & Economic Statistics) "Bayesian methodology for adaptive sparsity and shrinkage in regression".
It fits a univariate left, right, or interval censored linear regression model with autoregressive errors, considering the normal or the Student-t distribution for the innovations. It provides estimates and standard errors of the parameters, predicts future observations, and supports missing values on the dependent variable. References used for this package: Schumacher, F. L., Lachos, V. H., & Dey, D. K. (2017). Censored regression models with autoregressive errors: A likelihood-based perspective. Canadian Journal of Statistics, 45(4), 375-392 <doi:10.1002/cjs.11338>. Schumacher, F. L., Lachos, V. H., Vilca-Labra, F. E., & Castro, L. M. (2018). Influence diagnostics for censored regression models with autoregressive errors. Australian & New Zealand Journal of Statistics, 60(2), 209-229 <doi:10.1111/anzs.12229>. Valeriano, K. A., Schumacher, F. L., Galarza, C. E., & Matos, L. A. (2024). Censored autoregressive regression models with Studentâ t innovations. Canadian Journal of Statistics, 52(3), 804-828 <doi:10.1002/cjs.11804>.
Choice models are a widely used technique across numerous scientific disciplines. The Apollo package is a very flexible tool for the estimation and application of choice models in R. Users are able to write their own model functions or use a mix of already available ones. Random heterogeneity, both continuous and discrete and at the level of individuals and choices, can be incorporated for all models. There is support for both standalone models and hybrid model structures. Both classical and Bayesian estimation is available, and multiple discrete continuous models are covered in addition to discrete choice. Multi-threading processing is supported for estimation and a large number of pre and post-estimation routines, including for computing posterior (individual-level) distributions are available. For examples, a manual, and a support forum, visit <https://www.ApolloChoiceModelling.com>. For more information on choice models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess, S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview of the field.